Most companies use inventory turns alone to measure leanness. But a method that considers economies of scale and industry-specific relationships between sales and inventories will provide a more accurate assessment.
Cuneyt Eroglu is Assistant Professor in the Supply Chain and Information Management Group at the D'Amore-McKim School of Business, Northeastern University.
Adriana Rossiter-Hofer is Assistant Professor in the Supply Chain Management Department at the Sam M. Walton College of Business, University of Arkansas.
Because inventory management is so important for an organization's operational and financial success, inventory leanness is never far from a supply chain leader's mind. And good inventory management requires good measurement. As the adage goes, you cannot manage what you cannot measure.
Traditionally, inventory leanness has been measured using inventory turns, which in simple terms can be expressed as the ratio of sales to the average inventory level. The inventory turns measure was easy to compute, easy to explain, and easy to use, so it was widely adopted and many variants were developed. Yet the basic idea has never changed: simply compare inventory levels to sales. In this article, we present a new way to measure inventory leanness, which we refer to as the Empirical Leanness Indicator (ELI). The benefit of using ELI is that it gives managers a more accurate assessment of inventory leanness in cases where inventory turns could be misleading. The reason is that ELI considers both the economies of scale in inventory management and industry-specific relationships between sales and inventories. Inventory turns and its many variants ignore both of these important factors.
[Figure 5] Different shapes of the turnover curve depending on ?Enlarge this image
What is ELI?
While inventory turns simply compare a company's inventories to its sales, ELI compares inventories to a benchmark inventory level, which depends on a company's size (sales) and industry. This benchmark inventory level is based on the concept of turnover curves developed by Ballou1 and shown in Figure 1. A turnover curve describes the relationship between sales and inventories in a specific industry. Since this relationship can change from industry to industry, only data from companies in the same industry are used in estimating the turnover curve. This way, the turnover curve establishes a benchmark for proper comparisons.
In Figure 1, blue dots represent companies, the x-axis represents sales (size), and the y-axis represents inventory levels. The turnover curve captures the benchmark inventory level that a company should hold given its size. For example, the benchmark inventory level for Firm A is indicated by the green dot. The difference between actual and benchmark inventory levels (denoted by the dashed line) forms the basis for ELI. Companies below the turnover curve are considered lean, as they carry relatively less inventory for their size. The opposite is true for those above the turnover curve. To continue our example, Figure 1 shows that Firm A is not lean because it holds more inventory than it should for its size.
Comparison of ELI and inventory turns
Extensive empirical analyses (such as Eroglu and Hofer 2011) indicate that turnover curves are typically concave.2 That is, as a company grows (its sales increase), its inventory level also increases, but at a slower pace. This means that companies become more efficient in managing their inventories as they sell more products. Thus, there are economies of scale in inventory management.
Figure 2 illustrates a situation where inventory turns can be misleading because that measurement ignores economies of scale. Suppose that Firm B doubles its sales and inventories and moves from the green dot to the blue dot. Since both its sales and its inventories doubled at the same time, its inventory turns will stay constant. Moreover, if Firm B's inventory turns were higher than the industry average in the beginning, they will remain so after its sales double. However, the existence of economies of scale suggests that as Firm's B's sales doubled, its inventories should have less than doubled.
In the beginning, Firm B was below the turnover curve, indicating that its inventory was lean. After its sales and inventories doubled, it moved above the curve, because it has not experienced the efficiency gains that would be expected as a result of increased sales. Nevertheless, inventory turns suggest that Firm B is still as efficient as before. ELI, by contrast, captures a more accurate view by showing that Firm B has become less lean, as it failed to capture the economies of scale in inventory management.
The turnover curve can change from industry to industry due to the many different factors that can shape the inventory-sales relationship, such as different production technologies, the perishable nature of some products, and the intensity of competition in a particular industry. The turnover curve can be flatter in some industries and more curved in others. Similarly, the turnover curve can change over time—as new technologies are adopted, for example. ELI takes into account industry and time differences because a turnover curve is estimated for a group of companies in the same industry and the same time period. Hence, ELI assesses how lean a company is compared to its peers (competitors) in the same industry and during the same time period. Inventory turns, in contrast, calculate the ratio of sales to inventories in isolation of all the factors that may influence the relationship between the two.
How to apply ELI
ELI can be easily calculated in Excel. All you need is sales and inventory figures for businesses in a given industry at a particular point in time. This information is freely available for publicly traded companies from sources such as EDGAR or Yahoo Finance.
As an example, Figure 3 shows the sales and inventory figures (Columns B and C) of publicly traded companies operating in the audio and video equipment manufacturing industry (NAICS 334310) in the first quarter of 2003. First, we estimate the equation for the turnover curve Inventory = α(Sales)β. (Please see the sidebar for a more detailed explanation of this functional form.) Although it may look intimidating at first, this equation can be linearized by simply taking the natural logarithm of both sides, which yields lnInventory = lnα + β(lnSales). The natural logarithms of sales and inventory are shown in Columns D and E in Figure 3. To estimate α and β, we can run a linear regression analysis in Excel with lnInventory as the y variable and lnSales as the x variable. In the "regression" dialog box, it is important to check the "standardized residuals" box.
The estimation results from Excel are shown in Figure 4. The estimates for lnα and β are 2.32 and 0.89, respectively (cells H15 and H16). Moreover, the R square value (cell H3) is 0.89 (which by coincidence equals the estimate for β), which suggests that the model explains 89 percent of the variation in inventories. In other words, 89 percent of the differences in inventory levels among companies are attributable to the differences in sales volumes. This means that sales volume is the single most important driver of inventories. Such strong results are very typical in our analyses of dozens of industries over several decades. There is a very fundamental, very basic relationship between inventories and sales. In our experience, the explanatory power of this simple model, as measured by R square, rarely drops below 70 percent, and it is not uncommon to see R square values above 95 percent. This attests to the scientific validity of our model.
The coefficient β determines the shape of the turnover curve; that is, the extent of economies of scale. When β < 1, there are economies of scale in inventory management, which is true for most industries. When β > 1,there are diseconomies of scale, which is rarely observed. In Figure 4, the estimate of β is 0.89 (cell H16). Given the logarithmic transformation, this estimate means that for every 1 percent increase in sales, inventories increase by 0.89 percent on average. Hence, there are economies of scale in this particular industry.
The Excel output in Figure 4 also gives us the turnover curve. While Column M identifies firms 1 through 16, Column N (titled "Predicted Y") shows their benchmark inventory levels; that is, the point on the turnover curve corresponding to each company's inventory level. Column O lists the residuals, which represent the deviation from the estimated regression line (benchmark inventory level). A positive residual suggests that the company lies above the regression line, while a negative residual suggests the opposite. While there is no upper or lower limit on the residuals, the standardized residuals are scaled to range from -3 to +3. This standardization aids cross-industry comparisons. Hence, we use standardized residuals for ELI, which is calculated by multiplying the standardized residuals by -1. This way, a company that has a lot of inventories, and therefore lies above the regression line and has a positive standardized residual, will have a negative (low) leanness value. Similarly, a firm below the regression line will have a positive (high) leanness value.
To summarize, follow these steps for calculating the ELI:
Obtain sales and inventory data for companies in a given industry and time period.
Calculate the natural logarithm of sales and inventories.
Use regression in Excel with lnInventory as the y variable and lnSales as the x variable. Ask for standardized residuals.
Multiply standardized residuals by -1 to obtain ELI values.
A more detailed explanation of ELI can be found in Eroglu and Hofer (2011). For those who are interested in experimenting, we have calculated the turnover curves in various industries in 2013. You can benchmark your company's inventory leanness by going to our companion website for additional information, an instructional video, and a sample Excel file.
Beyond company-level comparisons
In this article, we have introduced ELI as a new way of measuring inventory leanness. ELI ranges on a continuum from -3 to +3. If a firm's ELI value is close to zero, it must be close to the turnover curve and therefore carries approximately the benchmark inventory for its size (sales). As a firm's ELI value increases it becomes leaner. Conversely, as its ELI decreases it becomes less lean. Note that ELI is not a categorical variable where a firm is either lean or not lean. Rather, ELI is about the degree of leanness.
Inventory turns are universally known, and ELI is a relatively new measure. Naturally, there can be resistance to ELI. For example, it can be argued that the results obtained by measuring leanness using ELI and inventory turns do not always disagree. Indeed, there can be situations where there is a significant overlap between ELI and inventory turns. This is especially true when the coefficient β of the turnover curve is equal to or close to 1. However, one cannot predict the extent of overlap between the ELI and inventory turns before estimating the turnover curve. As β deviates from 1, the overlap between ELI and inventory turns decreases and the disagreement increases. But once you calculate the turnover curve, you have a measure that is more accurate than inventory turns. So, why not use ELI? If you do end up using inventory turns as a measure of leanness, use caution and remember that inventory turns can lead you to improper comparisons.
ELI's method can be extended in interesting ways. Turnover curves are useful in establishing benchmarks for various operations. For example, instead of comparing companies, you can compare how efficiently various stocking locations (warehouses, distribution centers, and so forth) manage inventories. Similarly, you can compare the inventory performance of your company's retail locations. In addition, instead of using dollar amounts for sales and inventories, you can use other measures, such as case pack, units, pallets, and more.
The beauty of ELI is that it captures the fundamental relationship between sales and inventories—knowledge that can be applied in many interesting ways to benchmark and improve inventory management. Please let us know if you have any questions or comments. We would be especially interested to know how you implement ELI in your supply chain operations.
Notes:
1. R.H. Ballou, "Estimating and auditing aggregate inventory levels at multiple stocking points," Journal of Operations Management 1, no. 3 (1981): 143-153.
2. C. Eroglu and C. Hofer, "Lean, leaner, too lean? The inventory-performance link revisited," Journal of Operations Management 29, no. 4 (2011): 356-369.
Estimating the equation for the turnover curve
We model the turnover curve with the equation Inventory = α(Sales)β. So, if a company's sales volume is s, the corresponding benchmark inventory level is obtained by raising s to the power of β and multiplying by α, expressed as αsβ. The elements α and β are industry-specific parameters whose values change from industry to industry. Hence, they have to be estimated separately for each industry.
The advantage of using this function is that it can take on different shapes depending on β (the shape parameter), as shown in Figure 5. For example, when β = 1 the equation becomes Inventory = α x Sales and the turnover curve becomes a straight line. This means that inventories and sales increase or decrease at the same rate. When sales double, the inventories also double. Thus, there are no economies or diseconomies of scale when β = 1.
When the shape parameter β is between 0 and 1, the turnover curve becomes concave. In this case, sales and inventory change at different rates. More specifically, inventories increase or decrease more slowly than sales. For example, when sales double, inventories less than double. In other words, a company needs less than double the amount of inventory to sustain double the sales. Hence, there are economies of scale.
The opposite is true when the shape parameter β is greater than 1. In this case, inventories change at a higher rate than sales. For instance, when sales double, inventories more than double, indicating diseconomies of scale. In other words, a company needs more than double the amount of inventory to sustain double the sales.
The practice consists of 5,000 professionals from Accenture and from Avanade—the consulting firm’s joint venture with Microsoft. They will be supported by Microsoft product specialists who will work closely with the Accenture Center for Advanced AI. Together, that group will collaborate on AI and Copilot agent templates, extensions, plugins, and connectors to help organizations leverage their data and gen AI to reduce costs, improve efficiencies and drive growth, they said on Thursday.
Accenture and Avanade say they have already developed some AI tools for these applications. For example, a supplier discovery and risk agent can deliver real-time market insights, agile supply chain responses, and better vendor selection, which could result in up to 15% cost savings. And a procure-to-pay agent could improve efficiency by up to 40% and enhance vendor relations and satisfaction by addressing urgent payment requirements and avoiding disruptions of key services
Likewise, they have also built solutions for clients using Microsoft 365 Copilot technology. For example, they have created Copilots for a variety of industries and functions including finance, manufacturing, supply chain, retail, and consumer goods and healthcare.
Another part of the new practice will be educating clients how to use the technology, using an “Azure Generative AI Engineer Nanodegree program” to teach users how to design, build, and operationalize AI-driven applications on Azure, Microsoft’s cloud computing platform. The online classes will teach learners how to use AI models to solve real-world problems through automation, data insights, and generative AI solutions, the firms said.
“We are pleased to deepen our collaboration with Accenture to help our mutual customers develop AI-first business processes responsibly and securely, while helping them drive market differentiation,” Judson Althoff, executive vice president and chief commercial officer at Microsoft, said in a release. “By bringing together Copilots and human ambition, paired with the autonomous capabilities of an agent, we can accelerate AI transformation for organizations across industries and help them realize successful business outcomes through pragmatic innovation.”
That result came from the company’s “GEP Global Supply Chain Volatility Index,” an indicator tracking demand conditions, shortages, transportation costs, inventories, and backlogs based on a monthly survey of 27,000 businesses. The October index number was -0.39, which was up only slightly from its level of -0.43 in September.
Researchers found a steep rise in slack across North American supply chains due to declining factory activity in the U.S. In fact, purchasing managers at U.S. manufacturers made their strongest cutbacks to buying volumes in nearly a year and a half, indicating that factories in the world's largest economy are preparing for lower production volumes, GEP said.
Elsewhere, suppliers feeding Asia also reported spare capacity in October, albeit to a lesser degree than seen in Western markets. Europe's industrial plight remained a key feature of the data in October, as vendor capacity was significantly underutilized, reflecting a continuation of subdued demand in key manufacturing hubs across the continent.
"We're in a buyers' market. October is the fourth straight month that suppliers worldwide reported spare capacity, with notable contractions in factory demand across North America and Europe, underscoring the challenging outlook for Western manufacturers," Todd Bremer, vice president, GEP, said in a release. "President-elect Trump inherits U.S. manufacturers with plenty of spare capacity while in contrast, China's modest rebound and strong expansion in India demonstrate greater resilience in Asia."
Even as the e-commerce sector overall continues expanding toward a forecasted 41% of all retail sales by 2027, many small to medium e-commerce companies are struggling to find the investment funding they need to increase sales, according to a sector survey from online capital platform Stenn.
Global geopolitical instability and increasing inflation are causing e-commerce firms to face a liquidity crisis, which means companies may not be able to access the funds they need to grow, Stenn’s survey of 500 senior e-commerce leaders found. The research was conducted by Opinion Matters between August 29 and September 5.
Survey findings include:
61.8% of leaders who sought growth capital did so to invest in advanced technologies, such as AI and machine learning, to improve their businesses.
When asked which resources they wished they had more access to, 63.8% of respondents pointed to growth capital.
Women indicated a stronger need for business operations training (51.2%) and financial planning resources (48.8%) compared to men (30.8% and 15.4%).
40% of business owners are seeking external financial advice and mentorship at least once a week to help with business decisions.
Almost half (49.6%) of respondents are proactively forecasting their business activity 6-18 months ahead.
“As e-commerce continues to grow rapidly, driven by increasing online consumer demand and technological innovation, it’s important to remember that capital constraints and access to growth financing remain persistent hurdles for many e-commerce business leaders especially at small and medium-sized businesses,” Noel Hillman, Chief Commercial Officer at Stenn, said in a release. “In this competitive landscape, ensuring liquidity and optimizing supply chain processes are critical to sustaining growth and scaling operations.”
With six keynote and more than 100 educational sessions, CSCMP EDGE 2024 offered a wealth of content. Here are highlights from just some of the presentations.
A great American story
Author and entrepreneur Fawn Weaver closed out the first day of the conference by telling the little-known story of Nathan “Nearest” Green, who was born into slavery, freed after the Civil War, and went on to become the first master distiller for the Jack Daniel’s Whiskey brand. Through extensive research and interviews with descendants of the Daniel and Green families, Weaver discovered what she describes as a positive American story.
She told the story in her best-selling book, Love & Whiskey: The Remarkable True Story of Jack Daniel, His Master Distiller Nearest Green, and the Improbable Rise of Uncle Nearest. That story also inspired her to create Uncle Nearest Premium Whiskey.
Weaver discussed the barriers she encountered in bringing the brand to life, her vision for where it’s headed, and her take on the supply chain—which she views as both a necessary cost of doing business and an opportunity.
“[It’s] an opportunity if you can move quickly,” she said, pointing to a recent project in which the company was able to fast-track a new Uncle Nearest product thanks to close collaboration with its supply chain partners.
A two-pronged business transformation
We may be living in a world full of technology, but strategy and focus remain the top priorities when it comes to managing a business and its supply chains. So says Roberto Isaias, executive vice president and chief supply chain officer for toy manufacturing and entertainment company Mattel.
Isaias emphasized the point during his keynote on day two of EDGE 2024. He described how Mattel transformed itself amid surging demand for Barbie-branded items following the success of the Barbie movie.
That transformation, according to Isaias, came on two fronts: commercially and logistically. Today, Mattel is steadily moving beyond the toy aisle with two films and 13 TV series in production as well as 14 films and 35 shows in development. And as for those supply chain gains? The company has saved millions, increased productivity, and improved profit margins—even amid cost increases and inflation.
A framework for chasing excellence
Most of the time when CEOs present at an industry conference, they like to talk about their companies’ success stories. Not J.B. Hunt’s Shelley Simpson. Speaking at EDGE, the trucking company’s president and CEO led with a story about a time that the company lost a major customer.
According to Simpson, the company had a customer of their dedicated contract business in 2001 that was consistently making late shipments with no lead time. “We were working like crazy to try to satisfy them, and lost their business,” Simpson said.
When the team at J.B. Hunt later met with the customer’s chief supply chain officer and related all they had been doing, the customer responded, “You never shared everything you were doing for us.”
Out of that experience, came J.B. Hunt’s Customer Value Delivery framework. The framework consists of five steps: 1) understand customer needs, 2) deliver expectations, 3) measure results, 4) communicate performance, and 5) anticipate new value.
Next year’s CSCMP EDGE conference on October 5–8 in National Harbor, Md., promises to have a similarly deep lineup of keynote presentations. Register early at www.cscmpedge.org.
2024 was expected to be a bounce-back year for the logistics industry. We had the pandemic in the rearview mirror, and the economy was proving to be more resilient than expected, defying those prognosticators who believed a recession was imminent.
While most of the economy managed to stabilize in 2024, the logistics industry continued to see disruption and changes in international trade. World events conspired to drive much of the narrative surrounding the flow of goods worldwide. Additionally, a diminished reliance on China as a source for goods reduced some of the international trade flow from that manufacturing hub. Some of this trade diverted to other Asian nations, while nearshoring efforts brought some production back to North America, particularly Mexico.
Meanwhile trucking in the United States continued its 2-year recession, highlighted by weaker demand and excess capacity. Both contributed to a slow year, especially for truckload carriers that comprise about 90% of over-the-road shipments.
Labor issues were also front and center in 2024, as ports and rail companies dealt with threats of strikes, which resulted in new contracts and increased costs. Labor—and often a lack of it—continues to be an ongoing concern in the logistics industry.
In this annual issue, we bring a year-end perspective to these topics and more. Our issue is designed to complement CSCMP’s 35th Annual State of Logistics Report, which was released in June, and includes updates that were presented at the CSCMP EDGE conference held in October. In addition to this overview of the market, we have engaged top industry experts to dig into the status of key logistics sectors.
Hopefully as we move into 2025, logistics markets will build on an improving economy and strong consumer demand, while stabilizing those parts of the industry that could use some adrenaline, such as trucking. By this time next year, we hope to see a full recovery as the market fulfills its promise to deliver the needs of our very connected world.