While the Internet of Things (IoT) opens up a wide range of opportunities for the supply chain, it is also vulnerable to cyberattacks. Using a threat model can help companies assess how secure their system is.
Internet of Things (IoT) solutions are becoming increasingly common for both consumers and businesses. While consumers explore Internet-connected refrigerators and webcams, in the business world IoT solutions include:
Asset tracking: IoT tools that help companies identify the location of key assets such as trucks or IT equipment;
Smart buildings: IoT tools that use distributed sensors to improve environmental quality and lower the costs of heating, ventilation, and air conditioning (HVAC) systems;
Supply chain monitoring: IoT tools that help managers predict and avoid delays and damages of in-transit goods;
Equipment monitoring: IoT tools that monitor capital equipment to enable preventative maintenance.
While these IoT solutions offer real benefits, they also introduce new security risks, like the risk of data being intercepted or compromised. Companies need to recognize these potential threats and make informed security decisions regarding an IoT solution for their organization. To accomplish this, it's helpful to think in terms of a "threat model." In security parlance, a threat model summarizes: 1) potential attack objectives, 2) the ways in which a system might be compromised, and 3) security countermeasures. Supply chain leaders need to take each of these considerations into account as they build an accurate threat model for their particular IoT solution and environment, since different IoT solutions and environments have different threat models.
Attack Objectives
As you begin to develop a threat model for your IoT application, start by identifying plausible attack objectives. An attacker may have many objectives, but the following are some of the most common worth considering:
Physical harm: If your IoT system controls the physical activity of piece of equipment (for example, an industrial automation system), an attack could take control of that activity and do damage to your equipment or the facility.
Data corruption: An attacker could send false data (or block data from being sent), causing you to make the wrong decision but without harming any equipment directly.
Data destruction: Removing data either directly from the device or from the data-recording or storage system could help an attacker cover up some other malicious activity.
Espionage: An attacker could tap into the monitoring capabilities of your IoT system to "snoop" on sensitive data, without tampering with it.
Once you have identified the objective for a potential attack, it is helpful to prioritize which ones you should focus on preventing. For each potential attack scenario, it is useful to ask yourself, "What are the consequences?" to determine the severity of the attack and prioritize concerns. For example, the threat of losing IoT data for one hour due to a bad actor jamming a communications signal is probably less serious than the risk of damage to a facility. Next, consider what reasons an attacker might have to pursue the potential attack goals you've outlined. A scenario with a clear benefit to the attacker is often a bigger concern than one without any clear motivation to act on it. Prioritize threats with a known or conceivable motivation.
Potential Weaknesses
Once you've considered what could happen, next ask, "How likely is it to occur?" Consider potential attack pathways and the security weaknesses that might enable them. IoT vulnerabilities might include configuration errors (for example, neglecting to change a default password) or misuse of access privileges (for example, if a user copies and exports data).
Another key consideration is the potential avenue of attack presented by your IoT device's communications network protocol. This will vary widely based on the network you use:
Wired: Wired solutions use a physical connection, such as Ethernet or DSL, to transmit data. These solutions tend to avoid many of the security risks of Wi-Fi and Bluetooth solutions, but they are severely limited in scalability and mobility. As this article explains, wired solutions are generally not a great fit for many common IoT applications because they require so much infrastructure.1Â It is often preferable to rely on a wireless technology for a modern IoT implementation.
Bluetooth: Bluetooth supports a number of security mechanisms for different versions of the protocol.2 While the simplest security setting offers little protection from nearby eavesdroppers, other settings offer authentication and encryption mechanisms that improve security. That said, these security mechanisms often come at the cost of ease of deployment and maintenance.
Wi-Fi: Security for Wi-Fi-connected IoT devices is best summarized by the article "Wi-Fi access for the Internet of Things can be complicated."3 While the original Wi-Fi protocol is not well-suited for mobile IoT devices, there are mechanisms being introduced that should improve security. However, as with most wireless protocols, security improvements often have negative repercussions on operational costs, ease of setup, and compatibility with other existing systems.
Cellular: IoT devices that use cellular communication come with a fair amount of built-in security, as outlined in this paper from the cellular standards group GSMA.4 Security researchers have demonstrated ways of intercepting a cell signal with specialized equipment, but these attacks generally require the attacker to be in close proximity to the targeted device. As such, security risks with cellular-based IoT solutions are generally fairly limited.
In addition to the potential attack pathway, there are a number of other factors that you need to take into account in order to determine whether or not your IoT solution is secure. Consider, for example, whether an attacker needs physical access to the IoT device, and if so, how secure those devices are. A device on the outside of a building in a remote area may be more of a risk than a device inside a locked container, for example. Also consider the device itself—what skill set, tools, and time are required to tamper with it, and would the ends justify the means? Finally, consider whether attackers might achieve their objectives by abusing access granted to an authorized individual. What capabilities would the attacker have in this scenario? What safeguards should be established to counter this risk?
Evaluating the ways in which different IoT systems can be compromised will help you to build an accurate threat model of your particular environment. In turn, this careful consideration and evaluation will help you to determine the appropriate IoT solution for a given application.
What countermeasures can you employ?
After identifying the potential attack scenarios, consider the countermeasures that are built in to protect the IoT solution. One level is physical countermeasures—things that prevent or mitigate direct access to the device. Is the device easily accessible? Does the device have ethernet or USB ports that can be used to access the firmware? Is the firmware secured? Consider options for "hardening" the IoT device itself.
Second, consider the communications network (as discussed above). Weigh the tradeoffs of cost, ease, and security to make sure the method you've chosen meets your needs. Make sure that you are employing the safeguards available with your chosen technology.
IoT systems can also employ active countermeasures, such as scanning for unauthorized or unusual access and alerting administrators or security staff, similar to other enterprise systems. Finally, user accounts can be restricted to limit misuse, and the system as a whole can be built to maintain security even if a specific sensor has been compromised.
Making the final call
IoT is creating amazing opportunities for organizations to process data and automate environmental interactions in new ways. But as with all advances, IoT comes with risks. By applying a threat model framework and analyzing the possible attack objectives, security weaknesses, and possible countermeasures, organizations can apply a familiar security framework to this new technology. Organizations that are clear-eyed about evaluating these risks will find and deploy IoT solutions to derive enormous value while maintaining appropriate security.
3. For greater detail on these complications, see Peter Thornycroft, "Wi-Fi Access for the Internet of Things Can Be Complicated," Network World (March 21, 2016),  https://www.networkworld.com/article/3046132/internet-of-things/wi-fi-access-for-the-internet-of-things-can-be-complicated.html
Just 29% of supply chain organizations have the competitive characteristics they’ll need for future readiness, according to a Gartner survey released Tuesday. The survey focused on how organizations are preparing for future challenges and to keep their supply chains competitive.
Gartner surveyed 579 supply chain practitioners to determine the capabilities needed to manage the “future drivers of influence” on supply chains, which include artificial intelligence (AI) achievement and the ability to navigate new trade policies. According to the survey, the five competitive characteristics are: agility, resilience, regionalization, integrated ecosystems, and integrated enterprise strategy.
The survey analysis identified “leaders” among the respondents as supply chain organizations that have already developed at least three of the five competitive characteristics necessary to address the top five drivers of supply chain’s future.
Less than a third have met that threshold.
“Leaders shared a commitment to preparation through long-term, deliberate strategies, while non-leaders were more often focused on short-term priorities,” Pierfrancesco Manenti, vice president analyst in Gartner’s Supply Chain practice, said in a statement announcing the survey results.
“Most leaders have yet to invest in the most advanced technologies (e.g. real-time visibility, digital supply chain twin), but plan to do so in the next three-to-five years,” Manenti also said in the statement. “Leaders see technology as an enabler to their overall business strategies, while non-leaders more often invest in technology first, without having fully established their foundational capabilities.”
As part of the survey, respondents were asked to identify the future drivers of influence on supply chain performance over the next three to five years. The top five drivers are: achievement capability of AI (74%); the amount of new ESG regulations and trade policies being released (67%); geopolitical fight/transition for power (65%); control over data (62%); and talent scarcity (59%).
The analysis also identified four unique profiles of supply chain organizations, based on what their leaders deem as the most crucial capabilities for empowering their organizations over the next three to five years.
First, 54% of retailers are looking for ways to increase their financial recovery from returns. That’s because the cost to return a purchase averages 27% of the purchase price, which erases as much as 50% of the sales margin. But consumers have their own interests in mind: 76% of shoppers admit they’ve embellished or exaggerated the return reason to avoid a fee, a 39% increase from 2023 to 204.
Second, return experiences matter to consumers. A whopping 80% of shoppers stopped shopping at a retailer because of changes to the return policy—a 34% increase YoY.
Third, returns fraud and abuse is top-of-mind-for retailers, with wardrobing rising 38% in 2024. In fact, over two thirds (69%) of shoppers admit to wardrobing, which is the practice of buying an item for a specific reason or event and returning it after use. Shoppers also practice bracketing, or purchasing an item in a variety of colors or sizes and then returning all the unwanted options.
Fourth, returns come with a steep cost in terms of sustainability, with returns amounting to 8.4 billion pounds of landfill waste in 2023 alone.
“As returns have become an integral part of the shopper experience, retailers must balance meeting sky-high expectations with rising costs, environmental impact, and fraudulent behaviors,” Amena Ali, CEO of Optoro, said in the firm’s “2024 Returns Unwrapped” report. “By understanding shoppers’ behaviors and preferences around returns, retailers can create returns experiences that embrace their needs while driving deeper loyalty and protecting their bottom line.”
Facing an evolving supply chain landscape in 2025, companies are being forced to rethink their distribution strategies to cope with challenges like rising cost pressures, persistent labor shortages, and the complexities of managing SKU proliferation.
1. Optimize labor productivity and costs. Forward-thinking businesses are leveraging technology to get more done with fewer resources through approaches like slotting optimization, automation and robotics, and inventory visibility.
2. Maximize capacity with smart solutions. With e-commerce volumes rising, facilities need to handle more SKUs and orders without expanding their physical footprint. That can be achieved through high-density storage and dynamic throughput.
3. Streamline returns management. Returns are a growing challenge, thanks to the continued growth of e-commerce and the consumer practice of bracketing. Businesses can handle that with smarter reverse logistics processes like automated returns processing and reverse logistics visibility.
4. Accelerate order fulfillment with robotics. Robotic solutions are transforming the way orders are fulfilled, helping businesses meet customer expectations faster and more accurately than ever before by using autonomous mobile robots (AMRs and robotic picking.
5. Enhance end-of-line packaging. The final step in the supply chain is often the most visible to customers. So optimizing packaging processes can reduce costs, improve efficiency, and support sustainability goals through automated packaging systems and sustainability initiatives.
Geopolitical rivalries, alliances, and aspirations are rewiring the global economy—and the imposition of new tariffs on foreign imports by the U.S. will accelerate that process, according to an analysis by Boston Consulting Group (BCG).
Without a broad increase in tariffs, world trade in goods will keep growing at an average of 2.9% annually for the next eight years, the firm forecasts in its report, “Great Powers, Geopolitics, and the Future of Trade.” But the routes goods travel will change markedly as North America reduces its dependence on China and China builds up its links with the Global South, which is cementing its power in the global trade map.
“Global trade is set to top $29 trillion by 2033, but the routes these goods will travel is changing at a remarkable pace,” Aparna Bharadwaj, managing director and partner at BCG, said in a release. “Trade lanes were already shifting from historical patterns and looming US tariffs will accelerate this. Navigating these new dynamics will be critical for any global business.”
To understand those changes, BCG modeled the direct impact of the 60/25/20 scenario (60% tariff on Chinese goods, a 25% on goods from Canada and Mexico, and a 20% on imports from all other countries). The results show that the tariffs would add $640 billion to the cost of importing goods from the top ten U.S. import nations, based on 2023 levels, unless alternative sources or suppliers are found.
In terms of product categories imported by the U.S., the greatest impact would be on imported auto parts and automotive vehicles, which would primarily affect trade with Mexico, the EU, and Japan. Consumer electronics, electrical machinery, and fashion goods would be most affected by higher tariffs on Chinese goods. Specifically, the report forecasts that a 60% tariff rate would add $61 billion to cost of importing consumer electronics products from China into the U.S.
That strategy is described by RILA President Brian Dodge in a document titled “2025 Retail Public Policy Agenda,” which begins by describing leading retailers as “dynamic and multifaceted businesses that begin on Main Street and stretch across the world to bring high value and affordable consumer goods to American families.”
RILA says its policy priorities support that membership in four ways:
Investing in people. Retail is for everyone; the place for a first job, 2nd chance, third act, or a side hustle – the retail workforce represents the American workforce.
Ensuring a safe, sustainable future. RILA is working with lawmakers to help shape policies that protect our customers and meet expectations regarding environmental concerns.
Leading in the community. Retail is more than a store; we are an integral part of the fabric of our communities.
“As Congress and the Trump administration move forward to adopt policies that reduce regulatory burdens, create economic growth, and bring value to American families, understanding how such policies will impact retailers and the communities we serve is imperative,” Dodge said. “RILA and its member companies look forward to collaborating with policymakers to provide industry-specific insights and data to help shape any policies under consideration.”