The Journal of Business Logistics (JBL), published by the Council of Supply Chain Management Professionals (CSCMP), is recognized as one of the world's leading academic supply chain journals. But sometimes it may be hard for practitioners to see how the research presented in its pages applies to what they do on a day-to-day basis. To help bridge that gap, CSCMP's Supply Chain Quarterly challenges the authors of selected JBL articles to explain the real-world applications of their academic work.
THE ARTICLE
"Crowdsourcing Last Mile Delivery: Strategic Implications and Future Research Directions," by Vincent E. Castillo of The Ohio State University, John E. Bell of the University of Tennessee, William J. Rose of University College Dublin, and Alexandre M. Rodrigues of the University of Tennessee. Published in the December 2017 issue of the Journal of Business Logistics.
THE UPSHOT
As e-commerce sales continue to grow, last-mile delivery has become increasingly important to retailers. In response, many companies have started experimenting with "crowdsourced logistics" (CSL) to fulfill their customers' desire for fast, on-demand delivery. This sharing economy model patterns itself after ride-sharing services such as Uber or Lyft, but instead of transporting people, the drivers transport goods.
Because the sharing economy model is so new, it's not yet clear just how effective CSL is as a delivery strategy. For example, when companies work with a driver on an individual contract basis, they expose themselves to more risk and uncertainty than when they have a dedicated fleet of full-time drivers. That's because, under the sharing economy model, drivers manage their own schedules and work as long or as little as they desire. Therefore, companies cannot be certain of the supply of drivers that will be available to them at a particular time.
To get a better idea of how CSL compares to a dedicated fleet, the article's authors designed a simulation model of delivery services from an Amazon distribution center to 1,000 customer locations throughout New York City. The model compared the logistics effectiveness of a traditional dedicated fleet of delivery drivers to the use of crowdsourced logistics.
The article's lead author, Vince Castillo explained to Supply Chain Quarterly Executive Editor Susan K. Lacefield what the model revealed about crowdsourced logistics and how companies can apply these findings.
Why were you interested in studying crowdsourced logistics?
We wanted to study the last-mile delivery version of crowdsourced logistics for a few reasons. First, at that point in time, most of the academic literature was focused on the ridesharing model that moves people rather than goods, so there was an opportunity to try to build knowledge about and draw attention to this phenomenon that was emerging in practice. Second, the topic is one that we thought both practitioners and academics would be interested in. This meant that as long as we could develop a rigorous study, it would definitely have relevance, and both of those things are required to make worthwhile contributions. Finally, with the continued growth of e-commerce, the importance of last-mile delivery, and the impression that crowdsourced last-mile delivery could be a scalable solution, we felt this was a timely study to undertake.
Why did you decide to use a simulation model to look at the logistics effectiveness of crowdsourced logistics vs. a more traditional fleet of delivery drivers and vehicles?
Being such a novel innovation for delivery, we wanted to learn if and how CSL affects a shipper's last-mile strategy and more generally, its supply chain strategy. To answer these questions and to understand how and when CSL could be used in practice, we felt it was important to first understand the capabilities of a crowdsourced fleet in terms of logistics effectiveness. But for those capabilities to make any sense, we needed a comparative baseline, which is why we chose to think about CSL's effectiveness relative to a fleet of dedicated delivery agents. We were hoping to find differences in logistics effectiveness between the two fleet types that we could use to build middle-range theory about the contexts in which CSL might be used.
What results did the model show, and were any of them surprising to you?
We had some results that were somewhat counterintuitive and rather surprising. There are a number of differences between crowdsourced and dedicated fleet types that shippers have to consider when using CSL. We focused on one new variable in this study—the uncertainty in a supply of crowdsourced drivers that emanates from their autonomy. It's this autonomy of gig economy workers that intrigued us because it is common to all types of services that can be crowdsourced, so our findings could feasibly be more generalized. By looking first at the uncertainty in the availability of a supply of crowdsourced drivers, we expected that effectiveness in terms of total deliveries and on-time delivery rate would be lower for CSL than in a dedicated fleet of drivers across a number of delivery scenarios. Our hypotheses in these cases were mostly supported, and we confirmed that most of the time, dedicated is likely to be more effective than crowdsourced delivery.
However, when we increased delivery demand intensity (increasing the number of orders received and with less time between order receipts), we found that there were cases in which CSL was actually more effective than the dedicated fleet in terms of making more total deliveries. This was one of the surprising results because we expected that a dedicated fleet with known capacity and availability would always outperform the crowdsourced fleet comprised of amateurs who may or may not accept deliveries they're offered. It turns out though that when the fixed-size dedicated fleet reaches maximum utilization, additional delivery requests received beyond the capacity of that dedicated fleet are more likely to be late or even rejected, potentially meaning lost sales. Thus, fewer deliveries can be made because of the fixed capacity if the dedicated fleet is too busy. CSL, on the other hand, doesn't have the same upper boundary on its capacity, so a company could activate a crowdsourced fleet in the event demand starts rising above a certain level to respond in kind and perhaps not lose out on any sales.
How could practitioners apply your research?
I would say that practitioners interested in crowdsourcing last-mile delivery should recognize that this research highlights some of the nuance that they need to understand before employing this business model. CSL is not a panacea for last-mile delivery, and I don't recommend that anyone doing home delivery go and cancel their dedicated delivery contracts in favor of a fully crowdsourced last-mile strategy. However, there are other benefits, namely in the use of CSL as a backup plan to be able to serve delivery demand when it surges unexpectedly. That is, CSL appears to be a way of increasing agility and responsiveness in the last mile of the supply chain. Furthermore, CSL could also be used where delivery time windows are not critical to customer service—like in the case of online returns. These two applications need more research though, which we are currently undertaking.
For this particular study you looked at an Amazon distribution center in Manhattan. Do you think your results would have been significantly different if you had used a different kind of company or a different location?
Yes, and in fact, if you look at other types of companies that are crowdsourcing last-mile delivery, the product type seems to make a difference. For instance, shipping groceries and meals from local restaurants have been some of the more successful ventures, while a startup that crowdsourced flower delivery recently went out of business. Now there could be any number of reasons that the latter firm did not succeed, but the product seems to be important, namely because different products have different demand predictability, which affects intensity of on-demand delivery orders received.
I would also expect that in practice, CSL's effectiveness would differ across cities. For CSL to be somewhat reliable, you have to be near a population that is amenable to working in the gig economy. That mostly exists in large cities for the time being, although there are an increasing number of citizens from rural areas interested in working gig economy jobs. Furthermore, cities are designed differently with some being more conducive to logistics traffic than others as well as having different policies and regulations to account for. It's a question certainly worth exploring more deeply.
What do you see as the key takeaway message?
At first glance, it may seem like the draw of CSL is that it is cheaper than dedicated delivery, but this isn't necessarily the case. Companies typically guarantee an hourly wage or pay drivers by the mile on top of a per delivery wage. The primary benefit of CSL is actually increased agility, responsiveness, and flexibility in the last mile, which goes a long way to increasing repeat- purchase behavior and customer-service quality. Furthermore, crowdsourcing provides the potential for shippers to acquire a scalable last-mile delivery solution that has a much higher capacity than a dedicated fleet...if they can find the right formula that works for them.
ReposiTrak, a global food traceability network operator, will partner with Upshop, a provider of store operations technology for food retailers, to create an end-to-end grocery traceability solution that reaches from the supply chain to the retail store, the firms said today.
The partnership creates a data connection between suppliers and the retail store. It works by integrating Salt Lake City-based ReposiTrak’s network of thousands of suppliers and their traceability shipment data with Austin, Texas-based Upshop’s network of more than 450 retailers and their retail stores.
That accomplishment is important because it will allow food sector trading partners to meet the U.S. FDA’s Food Safety Modernization Act Section 204d (FSMA 204) requirements that they must create and store complete traceability records for certain foods.
And according to ReposiTrak and Upshop, the traceability solution may also unlock potential business benefits. It could do that by creating margin and growth opportunities in stores by connecting supply chain data with store data, thus allowing users to optimize inventory, labor, and customer experience management automation.
"Traceability requires data from the supply chain and – importantly – confirmation at the retail store that the proper and accurate lot code data from each shipment has been captured when the product is received. The missing piece for us has been the supply chain data. ReposiTrak is the leader in capturing and managing supply chain data, starting at the suppliers. Together, we can deliver a single, comprehensive traceability solution," Mark Hawthorne, chief innovation and strategy officer at Upshop, said in a release.
"Once the data is flowing the benefits are compounding. Traceability data can be used to improve food safety, reduce invoice discrepancies, and identify ways to reduce waste and improve efficiencies throughout the store,” Hawthorne said.
Under FSMA 204, retailers are required by law to track Key Data Elements (KDEs) to the store-level for every shipment containing high-risk food items from the Food Traceability List (FTL). ReposiTrak and Upshop say that major industry retailers have made public commitments to traceability, announcing programs that require more traceability data for all food product on a faster timeline. The efforts of those retailers have activated the industry, motivating others to institute traceability programs now, ahead of the FDA’s enforcement deadline of January 20, 2026.
Inclusive procurement practices can fuel economic growth and create jobs worldwide through increased partnerships with small and diverse suppliers, according to a study from the Illinois firm Supplier.io.
The firm’s “2024 Supplier Diversity Economic Impact Report” found that $168 billion spent directly with those suppliers generated a total economic impact of $303 billion. That analysis can help supplier diversity managers and chief procurement officers implement programs that grow diversity spend, improve supply chain competitiveness, and increase brand value, the firm said.
The companies featured in Supplier.io’s report collectively supported more than 710,000 direct jobs and contributed $60 billion in direct wages through their investments in small and diverse suppliers. According to the analysis, those purchases created a ripple effect, supporting over 1.4 million jobs and driving $105 billion in total income when factoring in direct, indirect, and induced economic impacts.
“At Supplier.io, we believe that empowering businesses with advanced supplier intelligence not only enhances their operational resilience but also significantly mitigates risks,” Aylin Basom, CEO of Supplier.io, said in a release. “Our platform provides critical insights that drive efficiency and innovation, enabling companies to find and invest in small and diverse suppliers. This approach helps build stronger, more reliable supply chains.”
Logistics industry growth slowed in December due to a seasonal wind-down of inventory and following one of the busiest holiday shopping seasons on record, according to the latest Logistics Managers’ Index (LMI) report, released this week.
The monthly LMI was 57.3 in December, down more than a percentage point from November’s reading of 58.4. Despite the slowdown, economic activity across the industry continued to expand, as an LMI reading above 50 indicates growth and a reading below 50 indicates contraction.
The LMI researchers said the monthly conditions were largely due to seasonal drawdowns in inventory levels—and the associated costs of holding them—at the retail level. The LMI’s Inventory Levels index registered 50, falling from 56.1 in November. That reduction also affected warehousing capacity, which slowed but remained in expansion mode: The LMI’s warehousing capacity index fell 7 points to a reading of 61.6.
December’s results reflect a continued trend toward more typical industry growth patterns following recent years of volatility—and they point to a successful peak holiday season as well.
“Retailers were clearly correct in their bet to stock [up] on goods ahead of the holiday season,” the LMI researchers wrote in their monthly report. “Holiday sales from November until Christmas Eve were up 3.8% year-over-year according to Mastercard. This was largely driven by a 6.7% increase in e-commerce sales, although in-person spending was up 2.9% as well.”
And those results came during a compressed peak shopping cycle.
“The increase in spending came despite the shorter holiday season due to the late Thanksgiving,” the researchers also wrote, citing National Retail Federation (NRF) estimates that U.S. shoppers spent just short of a trillion dollars in November and December, making it the busiest holiday season of all time.
The LMI is a monthly survey of logistics managers from across the country. It tracks industry growth overall and across eight areas: inventory levels and costs; warehousing capacity, utilization, and prices; and transportation capacity, utilization, and prices. The report is released monthly by researchers from Arizona State University, Colorado State University, Rochester Institute of Technology, Rutgers University, and the University of Nevada, Reno, in conjunction with the Council of Supply Chain Management Professionals (CSCMP).
As U.S. small and medium-sized enterprises (SMEs) face an uncertain business landscape in 2025, a substantial majority (67%) expect positive growth in the new year compared to 2024, according to a survey from DHL.
However, the survey also showed that businesses could face a rocky road to reach that goal, as they navigate a complex environment of regulatory/policy shifts and global market volatility. Both those issues were cited as top challenges by 36% of respondents, followed by staffing/talent retention (11%) and digital threats and cyber attacks (2%).
Against that backdrop, SMEs said that the biggest opportunity for growth in 2025 lies in expanding into new markets (40%), followed by economic improvements (31%) and implementing new technologies (14%).
As the U.S. prepares for a broad shift in political leadership in Washington after a contentious election, the SMEs in DHL’s survey were likely split evenly on their opinion about the impact of regulatory and policy changes. A plurality of 40% were on the fence (uncertain, still evaluating), followed by 24% who believe regulatory changes could negatively impact growth, 20% who see these changes as having a positive impact, and 16% predicting no impact on growth at all.
That uncertainty also triggered a split when respondents were asked how they planned to adjust their strategy in 2025 in response to changes in the policy or regulatory landscape. The largest portion (38%) of SMEs said they remained uncertain or still evaluating, followed by 30% who will make minor adjustments, 19% will maintain their current approach, and 13% who were willing to significantly adjust their approach.
That percentage is even greater than the 13.21% of total retail sales that were returned. Measured in dollars, returns (including both legitimate and fraudulent) last year reached $685 billion out of the $5.19 trillion in total retail sales.
“It’s clear why retailers want to limit bad actors that exhibit fraudulent and abusive returns behavior, but the reality is that they are finding stricter returns policies are not reducing the returns fraud they face,” Michael Osborne, CEO of Appriss Retail, said in a release.
Specifically, the report lists the leading types of returns fraud and abuse reported by retailers in 2024, including findings that:
60% of retailers surveyed reported incidents of “wardrobing,” or the act of consumers buying an item, using the merchandise, and then returning it.
55% cited cases of returning an item obtained through fraudulent or stolen tender, such as stolen credit cards, counterfeit bills, gift cards obtained through fraudulent means or fraudulent checks.
48% of retailers faced occurrences of returning stolen merchandise.
Together, those statistics show that the problem remains prevalent despite growing efforts by retailers to curb retail returns fraud through stricter returns policies, while still offering a sufficiently open returns policy to keep customers loyal, they said.
“Returns are a significant cost for retailers, and the rise of online shopping could increase this trend,” Kevin Mahoney, managing director, retail, Deloitte Consulting LLP, said. “As retailers implement policies to address this issue, they should avoid negatively affecting customer loyalty and retention. Effective policies should reduce losses for the retailer while minimally impacting the customer experience. This approach can be crucial for long-term success.”