Supply chain technology vendors are increasingly incorporating machine learning into their applications, helping their solutions more accurately understand and react to changing conditions.
One of the biggest developing trends in the logistics technology space is the growing application of machine learning in warehousing and transportation. In fact, something of an arms race has developed among technology providers as they try to leverage machine learning to differentiate their applications.
Machine learning is a branch of artificial intelligence. "Learning" occurs when a machine takes an existing data set, observes the accuracy of the output, and updates its own model so that better outputs will occur. Any machine that does this is using machine learning. It doesn't matter if data science methods are used or not. It does not matter if neural networks or some other form of supervised or unsupervised learning technique is being used. From a user's perspective, it's not necessary to get bogged down on the specific technique.
Article Figures
[Figure 1] Machine learning can improve algorithms used by warehouse management systemsEnlarge this image
Warehouse applications
Technology providers are already applying machine learning to many areas of the warehouse. Part of what makes warehousing a suitable application for machine learning is the fact that a warehouse operating environment is constantly in flux, especially in today's direct-to-consumer facilities. These facilities must constantly balance the competing priorities of efficiency and responsiveness. At the same time, there are numerous potential constraints on warehouse operations, and it is difficult to predict under which circumstances a given function or resource may become a constraint on throughput. Predictability becomes especially difficult when a facility dynamically introduces orders into an existing workload. Machine learning's ability to adapt to changing conditions in complex environments means that it can produce insights that would not be possible with traditional software.
For example, Manhattan Associates utilizes machine learning within the Order Streaming component of its warehouse management system (WMS) to determine the amount of time required to complete a certain task in a given set of circumstances. The machine learning algorithm reviews past data including type of task, historic duration, and item characteristics. It then identifies which conditions will affect how long it takes to complete a task. The next time that task is assigned, the system can take those conditions into account when estimating how long it will take to complete the task.
As another example, JDA Software is exploring machine learning within its Luminate Warehouse Tasking application to simulate the correlations between multiple attributes (such as congestion and increasing/decreasing demand for a particular resource) and order processing times.
A conceptual illustration of this concept can be seen in Figure 1. It may be thought that the primary factor affecting order processing time is the distance from the dispatch to the pick point. However, the first chart in Figure 1 shows that the predictive ability of that algorithm (shown by the orange line) is not accurate for some of the picks. When the picks are divided into two subsets based on weight, we can see that the accuracy of the algorithm changes. Machine learning can recognize this degradation and create a new input-output relationship that offers a more robust predictive power. Machine learning may determine that distance to dispatch is the determining factor for items under 100 pounds, but that weight is the determining factor for items over 100 pounds.
Machine learning is also currently used in support of warehouse automation. RightPick, the piece-picking solution from RightHand Robotics, encounters a wide range of items and utilizes machine learning to improve its performance based on the prior experience of its robots. RightPick captures an abundance of data from its autonomous picks such as what the robot saw (camera), what it did (including approach and pick method), and what happened (such as success, failure, or placement). This data then feeds convolutional neural networks that enable the robot to distinguish between adjacent items, which help improve picking accuracy. The solution's software intelligence, driven by machine learning, is enabling the robots to pick 50 percent faster than they did a year prior. This productivity improvement is due to having a higher pick-completion ratio and a shorter pick-attempt time. Knapp, an Austria-based warehouse automation provider, also applies machine learning to the piece-picking process. Machine learning supports Knapp's Pick-it-Easy Robot by identifying item shape and determining the best grip method and ideal grip point.
Transportation applications
Machine learning is also becoming increasingly important in transportation management and execution systems. The most notable application is generating a more informed and up-to-date estimated time of arrival (ETA) for shipments. Machine learning is working with real-time visibility solutions to learn more about constraints (such as capacity, regulations, and hours of service) and then using that information to give a much better ETA for shipments to warehouses, stores, and the end customer.
These ETA systems are using a variety of data streams. One emerging data stream involves using Internet of Things (IoT) data from trucks to get a better understanding of driver behavior, such as typical driving speeds and times as well as how they operate in heavily congested areas. Trimble Transportation's True ETA application, for example, takes sensor data from trucks and incorporates hours of service rules to know when, where, and for how long a driver needs to stop. The application also understands that where and when the driver stops will have an impact on the ETA. This is especially true if drivers stop before a major city and will have to endure rush hour traffic once they start driving again.
Other data streams include port data; social, news, events, and weather (SNEW) data; and traffic data. Many TMS companies are partnering with data aggregators such as FourKites, project44, 10-4 Systems, and others to use this data for improved ETAs. This data helps to develop forward-looking transportation plans. JDA is an example of a TMS provider that is bringing in multiple external data sources as part of transportation planning and execution. JDA uses these data streams to better understand potential disruptions in the travel time for shipments. Using machine learning, companies can make more resilient plans that can absorb disruption without making major changes. An example is learning about the downstream effect that a late container at the port has on the overall transportation network and adjusting plans and ETAs accordingly. Most importantly, this information can help companies proactively communicate with customers when a disruption occurs.
Machine learning is playing a role in other aspects of transportation management as well. Companies buy a TMS to achieve freight savings by enabling network simulation and design, load consolidation, lower-cost mode selections, and multi-stop route optimization. Machine learning gives companies the ability to maintain high service levels while achieving these savings. Shippers can learn which carriers meet on-time service levels and which do not, which lanes typically carry more chance for delays, and whether there is an optimal number of stops before shipments become late. Machine learning can aid shippers in better understanding how to drive efficiencies without sacrificing service levels.
Supply chain software companies are in the early stages of learning how to incorporate these technologies into their solutions. The solutions available today will only continue to improve. When a shipper implements a machine-learning solution, its individual solution will improve over time as it accumulates more and more data. Additionally, some supply chain solutions are offered in a many-to-many cloud architecture. These solutions have the ability to improve based upon the data not just of one shipper, but of all the shippers that are using the solution.
ReposiTrak, a global food traceability network operator, will partner with Upshop, a provider of store operations technology for food retailers, to create an end-to-end grocery traceability solution that reaches from the supply chain to the retail store, the firms said today.
The partnership creates a data connection between suppliers and the retail store. It works by integrating Salt Lake City-based ReposiTrak’s network of thousands of suppliers and their traceability shipment data with Austin, Texas-based Upshop’s network of more than 450 retailers and their retail stores.
That accomplishment is important because it will allow food sector trading partners to meet the U.S. FDA’s Food Safety Modernization Act Section 204d (FSMA 204) requirements that they must create and store complete traceability records for certain foods.
And according to ReposiTrak and Upshop, the traceability solution may also unlock potential business benefits. It could do that by creating margin and growth opportunities in stores by connecting supply chain data with store data, thus allowing users to optimize inventory, labor, and customer experience management automation.
"Traceability requires data from the supply chain and – importantly – confirmation at the retail store that the proper and accurate lot code data from each shipment has been captured when the product is received. The missing piece for us has been the supply chain data. ReposiTrak is the leader in capturing and managing supply chain data, starting at the suppliers. Together, we can deliver a single, comprehensive traceability solution," Mark Hawthorne, chief innovation and strategy officer at Upshop, said in a release.
"Once the data is flowing the benefits are compounding. Traceability data can be used to improve food safety, reduce invoice discrepancies, and identify ways to reduce waste and improve efficiencies throughout the store,” Hawthorne said.
Under FSMA 204, retailers are required by law to track Key Data Elements (KDEs) to the store-level for every shipment containing high-risk food items from the Food Traceability List (FTL). ReposiTrak and Upshop say that major industry retailers have made public commitments to traceability, announcing programs that require more traceability data for all food product on a faster timeline. The efforts of those retailers have activated the industry, motivating others to institute traceability programs now, ahead of the FDA’s enforcement deadline of January 20, 2026.
Inclusive procurement practices can fuel economic growth and create jobs worldwide through increased partnerships with small and diverse suppliers, according to a study from the Illinois firm Supplier.io.
The firm’s “2024 Supplier Diversity Economic Impact Report” found that $168 billion spent directly with those suppliers generated a total economic impact of $303 billion. That analysis can help supplier diversity managers and chief procurement officers implement programs that grow diversity spend, improve supply chain competitiveness, and increase brand value, the firm said.
The companies featured in Supplier.io’s report collectively supported more than 710,000 direct jobs and contributed $60 billion in direct wages through their investments in small and diverse suppliers. According to the analysis, those purchases created a ripple effect, supporting over 1.4 million jobs and driving $105 billion in total income when factoring in direct, indirect, and induced economic impacts.
“At Supplier.io, we believe that empowering businesses with advanced supplier intelligence not only enhances their operational resilience but also significantly mitigates risks,” Aylin Basom, CEO of Supplier.io, said in a release. “Our platform provides critical insights that drive efficiency and innovation, enabling companies to find and invest in small and diverse suppliers. This approach helps build stronger, more reliable supply chains.”
Logistics industry growth slowed in December due to a seasonal wind-down of inventory and following one of the busiest holiday shopping seasons on record, according to the latest Logistics Managers’ Index (LMI) report, released this week.
The monthly LMI was 57.3 in December, down more than a percentage point from November’s reading of 58.4. Despite the slowdown, economic activity across the industry continued to expand, as an LMI reading above 50 indicates growth and a reading below 50 indicates contraction.
The LMI researchers said the monthly conditions were largely due to seasonal drawdowns in inventory levels—and the associated costs of holding them—at the retail level. The LMI’s Inventory Levels index registered 50, falling from 56.1 in November. That reduction also affected warehousing capacity, which slowed but remained in expansion mode: The LMI’s warehousing capacity index fell 7 points to a reading of 61.6.
December’s results reflect a continued trend toward more typical industry growth patterns following recent years of volatility—and they point to a successful peak holiday season as well.
“Retailers were clearly correct in their bet to stock [up] on goods ahead of the holiday season,” the LMI researchers wrote in their monthly report. “Holiday sales from November until Christmas Eve were up 3.8% year-over-year according to Mastercard. This was largely driven by a 6.7% increase in e-commerce sales, although in-person spending was up 2.9% as well.”
And those results came during a compressed peak shopping cycle.
“The increase in spending came despite the shorter holiday season due to the late Thanksgiving,” the researchers also wrote, citing National Retail Federation (NRF) estimates that U.S. shoppers spent just short of a trillion dollars in November and December, making it the busiest holiday season of all time.
The LMI is a monthly survey of logistics managers from across the country. It tracks industry growth overall and across eight areas: inventory levels and costs; warehousing capacity, utilization, and prices; and transportation capacity, utilization, and prices. The report is released monthly by researchers from Arizona State University, Colorado State University, Rochester Institute of Technology, Rutgers University, and the University of Nevada, Reno, in conjunction with the Council of Supply Chain Management Professionals (CSCMP).
As U.S. small and medium-sized enterprises (SMEs) face an uncertain business landscape in 2025, a substantial majority (67%) expect positive growth in the new year compared to 2024, according to a survey from DHL.
However, the survey also showed that businesses could face a rocky road to reach that goal, as they navigate a complex environment of regulatory/policy shifts and global market volatility. Both those issues were cited as top challenges by 36% of respondents, followed by staffing/talent retention (11%) and digital threats and cyber attacks (2%).
Against that backdrop, SMEs said that the biggest opportunity for growth in 2025 lies in expanding into new markets (40%), followed by economic improvements (31%) and implementing new technologies (14%).
As the U.S. prepares for a broad shift in political leadership in Washington after a contentious election, the SMEs in DHL’s survey were likely split evenly on their opinion about the impact of regulatory and policy changes. A plurality of 40% were on the fence (uncertain, still evaluating), followed by 24% who believe regulatory changes could negatively impact growth, 20% who see these changes as having a positive impact, and 16% predicting no impact on growth at all.
That uncertainty also triggered a split when respondents were asked how they planned to adjust their strategy in 2025 in response to changes in the policy or regulatory landscape. The largest portion (38%) of SMEs said they remained uncertain or still evaluating, followed by 30% who will make minor adjustments, 19% will maintain their current approach, and 13% who were willing to significantly adjust their approach.
That percentage is even greater than the 13.21% of total retail sales that were returned. Measured in dollars, returns (including both legitimate and fraudulent) last year reached $685 billion out of the $5.19 trillion in total retail sales.
“It’s clear why retailers want to limit bad actors that exhibit fraudulent and abusive returns behavior, but the reality is that they are finding stricter returns policies are not reducing the returns fraud they face,” Michael Osborne, CEO of Appriss Retail, said in a release.
Specifically, the report lists the leading types of returns fraud and abuse reported by retailers in 2024, including findings that:
60% of retailers surveyed reported incidents of “wardrobing,” or the act of consumers buying an item, using the merchandise, and then returning it.
55% cited cases of returning an item obtained through fraudulent or stolen tender, such as stolen credit cards, counterfeit bills, gift cards obtained through fraudulent means or fraudulent checks.
48% of retailers faced occurrences of returning stolen merchandise.
Together, those statistics show that the problem remains prevalent despite growing efforts by retailers to curb retail returns fraud through stricter returns policies, while still offering a sufficiently open returns policy to keep customers loyal, they said.
“Returns are a significant cost for retailers, and the rise of online shopping could increase this trend,” Kevin Mahoney, managing director, retail, Deloitte Consulting LLP, said. “As retailers implement policies to address this issue, they should avoid negatively affecting customer loyalty and retention. Effective policies should reduce losses for the retailer while minimally impacting the customer experience. This approach can be crucial for long-term success.”