Supply chain technology vendors are increasingly incorporating machine learning into their applications, helping their solutions more accurately understand and react to changing conditions.
One of the biggest developing trends in the logistics technology space is the growing application of machine learning in warehousing and transportation. In fact, something of an arms race has developed among technology providers as they try to leverage machine learning to differentiate their applications.
Machine learning is a branch of artificial intelligence. "Learning" occurs when a machine takes an existing data set, observes the accuracy of the output, and updates its own model so that better outputs will occur. Any machine that does this is using machine learning. It doesn't matter if data science methods are used or not. It does not matter if neural networks or some other form of supervised or unsupervised learning technique is being used. From a user's perspective, it's not necessary to get bogged down on the specific technique.
Article Figures
[Figure 1] Machine learning can improve algorithms used by warehouse management systemsEnlarge this image
Warehouse applications
Technology providers are already applying machine learning to many areas of the warehouse. Part of what makes warehousing a suitable application for machine learning is the fact that a warehouse operating environment is constantly in flux, especially in today's direct-to-consumer facilities. These facilities must constantly balance the competing priorities of efficiency and responsiveness. At the same time, there are numerous potential constraints on warehouse operations, and it is difficult to predict under which circumstances a given function or resource may become a constraint on throughput. Predictability becomes especially difficult when a facility dynamically introduces orders into an existing workload. Machine learning's ability to adapt to changing conditions in complex environments means that it can produce insights that would not be possible with traditional software.
For example, Manhattan Associates utilizes machine learning within the Order Streaming component of its warehouse management system (WMS) to determine the amount of time required to complete a certain task in a given set of circumstances. The machine learning algorithm reviews past data including type of task, historic duration, and item characteristics. It then identifies which conditions will affect how long it takes to complete a task. The next time that task is assigned, the system can take those conditions into account when estimating how long it will take to complete the task.
As another example, JDA Software is exploring machine learning within its Luminate Warehouse Tasking application to simulate the correlations between multiple attributes (such as congestion and increasing/decreasing demand for a particular resource) and order processing times.
A conceptual illustration of this concept can be seen in Figure 1. It may be thought that the primary factor affecting order processing time is the distance from the dispatch to the pick point. However, the first chart in Figure 1 shows that the predictive ability of that algorithm (shown by the orange line) is not accurate for some of the picks. When the picks are divided into two subsets based on weight, we can see that the accuracy of the algorithm changes. Machine learning can recognize this degradation and create a new input-output relationship that offers a more robust predictive power. Machine learning may determine that distance to dispatch is the determining factor for items under 100 pounds, but that weight is the determining factor for items over 100 pounds.
Machine learning is also currently used in support of warehouse automation. RightPick, the piece-picking solution from RightHand Robotics, encounters a wide range of items and utilizes machine learning to improve its performance based on the prior experience of its robots. RightPick captures an abundance of data from its autonomous picks such as what the robot saw (camera), what it did (including approach and pick method), and what happened (such as success, failure, or placement). This data then feeds convolutional neural networks that enable the robot to distinguish between adjacent items, which help improve picking accuracy. The solution's software intelligence, driven by machine learning, is enabling the robots to pick 50 percent faster than they did a year prior. This productivity improvement is due to having a higher pick-completion ratio and a shorter pick-attempt time. Knapp, an Austria-based warehouse automation provider, also applies machine learning to the piece-picking process. Machine learning supports Knapp's Pick-it-Easy Robot by identifying item shape and determining the best grip method and ideal grip point.
Transportation applications
Machine learning is also becoming increasingly important in transportation management and execution systems. The most notable application is generating a more informed and up-to-date estimated time of arrival (ETA) for shipments. Machine learning is working with real-time visibility solutions to learn more about constraints (such as capacity, regulations, and hours of service) and then using that information to give a much better ETA for shipments to warehouses, stores, and the end customer.
These ETA systems are using a variety of data streams. One emerging data stream involves using Internet of Things (IoT) data from trucks to get a better understanding of driver behavior, such as typical driving speeds and times as well as how they operate in heavily congested areas. Trimble Transportation's True ETA application, for example, takes sensor data from trucks and incorporates hours of service rules to know when, where, and for how long a driver needs to stop. The application also understands that where and when the driver stops will have an impact on the ETA. This is especially true if drivers stop before a major city and will have to endure rush hour traffic once they start driving again.
Other data streams include port data; social, news, events, and weather (SNEW) data; and traffic data. Many TMS companies are partnering with data aggregators such as FourKites, project44, 10-4 Systems, and others to use this data for improved ETAs. This data helps to develop forward-looking transportation plans. JDA is an example of a TMS provider that is bringing in multiple external data sources as part of transportation planning and execution. JDA uses these data streams to better understand potential disruptions in the travel time for shipments. Using machine learning, companies can make more resilient plans that can absorb disruption without making major changes. An example is learning about the downstream effect that a late container at the port has on the overall transportation network and adjusting plans and ETAs accordingly. Most importantly, this information can help companies proactively communicate with customers when a disruption occurs.
Machine learning is playing a role in other aspects of transportation management as well. Companies buy a TMS to achieve freight savings by enabling network simulation and design, load consolidation, lower-cost mode selections, and multi-stop route optimization. Machine learning gives companies the ability to maintain high service levels while achieving these savings. Shippers can learn which carriers meet on-time service levels and which do not, which lanes typically carry more chance for delays, and whether there is an optimal number of stops before shipments become late. Machine learning can aid shippers in better understanding how to drive efficiencies without sacrificing service levels.
Supply chain software companies are in the early stages of learning how to incorporate these technologies into their solutions. The solutions available today will only continue to improve. When a shipper implements a machine-learning solution, its individual solution will improve over time as it accumulates more and more data. Additionally, some supply chain solutions are offered in a many-to-many cloud architecture. These solutions have the ability to improve based upon the data not just of one shipper, but of all the shippers that are using the solution.
Businesses are cautiously optimistic as peak holiday shipping season draws near, with many anticipating year-over-year sales increases as they continue to battle challenging supply chain conditions.
That’s according to the DHL 2024 Peak Season Shipping Survey, released today by express shipping service provider DHL Express U.S. The company surveyed small and medium-sized enterprises (SMEs) to gauge their holiday business outlook compared to last year and found that a mix of optimism and “strategic caution” prevail ahead of this year’s peak.
Nearly half (48%) of the SMEs surveyed said they expect higher holiday sales compared to 2023, while 44% said they expect sales to remain on par with last year, and just 8% said they foresee a decline. Respondents said the main challenges to hitting those goals are supply chain problems (35%), inflation and fluctuating consumer demand (34%), staffing (16%), and inventory challenges (14%).
But respondents said they have strategies in place to tackle those issues. Many said they began preparing for holiday season earlier this year—with 45% saying they started planning in Q2 or earlier, up from 39% last year. Other strategies include expanding into international markets (35%) and leveraging holiday discounts (32%).
Sixty percent of respondents said they will prioritize personalized customer service as a way to enhance customer interactions and loyalty this year. Still others said they will invest in enhanced web and mobile experiences (23%) and eco-friendly practices (13%) to draw customers this holiday season.
The practice consists of 5,000 professionals from Accenture and from Avanade—the consulting firm’s joint venture with Microsoft. They will be supported by Microsoft product specialists who will work closely with the Accenture Center for Advanced AI. Together, that group will collaborate on AI and Copilot agent templates, extensions, plugins, and connectors to help organizations leverage their data and gen AI to reduce costs, improve efficiencies and drive growth, they said on Thursday.
Accenture and Avanade say they have already developed some AI tools for these applications. For example, a supplier discovery and risk agent can deliver real-time market insights, agile supply chain responses, and better vendor selection, which could result in up to 15% cost savings. And a procure-to-pay agent could improve efficiency by up to 40% and enhance vendor relations and satisfaction by addressing urgent payment requirements and avoiding disruptions of key services
Likewise, they have also built solutions for clients using Microsoft 365 Copilot technology. For example, they have created Copilots for a variety of industries and functions including finance, manufacturing, supply chain, retail, and consumer goods and healthcare.
Another part of the new practice will be educating clients how to use the technology, using an “Azure Generative AI Engineer Nanodegree program” to teach users how to design, build, and operationalize AI-driven applications on Azure, Microsoft’s cloud computing platform. The online classes will teach learners how to use AI models to solve real-world problems through automation, data insights, and generative AI solutions, the firms said.
“We are pleased to deepen our collaboration with Accenture to help our mutual customers develop AI-first business processes responsibly and securely, while helping them drive market differentiation,” Judson Althoff, executive vice president and chief commercial officer at Microsoft, said in a release. “By bringing together Copilots and human ambition, paired with the autonomous capabilities of an agent, we can accelerate AI transformation for organizations across industries and help them realize successful business outcomes through pragmatic innovation.”
Census data showed that overall retail sales in October were up 0.4% seasonally adjusted month over month and up 2.8% unadjusted year over year. That compared with increases of 0.8% month over month and 2% year over year in September.
October’s core retail sales as defined by NRF — based on the Census data but excluding automobile dealers, gasoline stations and restaurants — were unchanged seasonally adjusted month over month but up 5.4% unadjusted year over year.
Core sales were up 3.5% year over year for the first 10 months of the year, in line with NRF’s forecast for 2024 retail sales to grow between 2.5% and 3.5% over 2023. NRF is forecasting that 2024 holiday sales during November and December will also increase between 2.5% and 3.5% over the same time last year.
“October’s pickup in retail sales shows a healthy pace of spending as many consumers got an early start on holiday shopping,” NRF Chief Economist Jack Kleinhenz said in a release. “October sales were a good early step forward into the holiday shopping season, which is now fully underway. Falling energy prices have likely provided extra dollars for household spending on retail merchandise.”
Despite that positive trend, market watchers cautioned that retailers still need to offer competitive value propositions and customer experience in order to succeed in the holiday season. “The American consumer has been more resilient than anyone could have expected. But that isn’t a free pass for retailers to under invest in their stores,” Nikki Baird, VP of strategy & product at Aptos, a solutions provider of unified retail technology based out of Alpharetta, Georgia, said in a statement. “They need to make investments in labor, customer experience tech, and digital transformation. It has been too easy to kick the can down the road until you suddenly realize there’s no road left.”
A similar message came from Chip West, a retail and consumer behavior expert at the marketing, packaging, print and supply chain solutions provider RRD. “October’s increase proved to be slightly better than projections and was likely boosted by lower fuel prices. As inflation slowed for a number of months, prices in several categories have stabilized, with some even showing declines, offering further relief to consumers,” West said. “The data also looks to be a positive sign as we kick off the holiday shopping season. Promotions and discounts will play a prominent role in holiday shopping behavior as they are key influencers in consumer’s purchasing decisions.”
Third-party logistics (3PL) providers’ share of large real estate leases across the U.S. rose significantly through the third quarter of 2024 compared to the same time last year, as more retailers and wholesalers have been outsourcing their warehouse and distribution operations to 3PLs, according to a report from real estate firm CBRE.
Specifically, 3PLs’ share of bulk industrial leasing activity—covering leases of 100,000 square feet or more—rose to 34.1% through Q3 of this year from 30.6% through Q3 last year. By raw numbers, 3PLs have accounted for 498 bulk leases so far this year, up by 9% from the 457 at this time last year.
By category, 3PLs’ share of 34.1% ranked above other occupier types such as: general retail and wholesale (26.6), food and beverage (9.0), automobiles, tires, and parts (7.9), manufacturing (6.2), building materials and construction (5.6), e-commerce only (5.6), medical (2.7), and undisclosed (2.3).
On a quarterly basis, bulk leasing by 3PLs has steadily increased this year, reversing the steadily decreasing trend of 2023. CBRE pointed to three main reasons for that resurgence:
Import Flexibility. Labor disruptions, extreme weather patterns, and geopolitical uncertainty have led many companies to diversify their import locations. Using 3PLs allows for more inventory flexibility, a key component to retailer success in times of uncertainty.
Capital Allocation/Preservation. Warehousing and distribution of goods is expensive, draining capital resources for transportation costs, rent, or labor. But outsourcing to 3PLs provides companies with more flexibility to increase or decrease their inventories without any risk of signing their own lease commitments. And using a 3PL also allows companies to switch supply chain costs from capital to operational expenses.
Focus on Core Competency. Outsourcing their logistics operations to 3PLs allows companies to focus on core business competencies that drive revenue, such as product development, sales, and customer service.
Looking into the future, these same trends will continue to drive 3PL warehouse demand, CBRE said. Economic, geopolitical and supply chain uncertainty will remain prevalent in the coming quarters but will not diminish the need to effectively manage inventory levels.
That result came from the company’s “GEP Global Supply Chain Volatility Index,” an indicator tracking demand conditions, shortages, transportation costs, inventories, and backlogs based on a monthly survey of 27,000 businesses. The October index number was -0.39, which was up only slightly from its level of -0.43 in September.
Researchers found a steep rise in slack across North American supply chains due to declining factory activity in the U.S. In fact, purchasing managers at U.S. manufacturers made their strongest cutbacks to buying volumes in nearly a year and a half, indicating that factories in the world's largest economy are preparing for lower production volumes, GEP said.
Elsewhere, suppliers feeding Asia also reported spare capacity in October, albeit to a lesser degree than seen in Western markets. Europe's industrial plight remained a key feature of the data in October, as vendor capacity was significantly underutilized, reflecting a continuation of subdued demand in key manufacturing hubs across the continent.
"We're in a buyers' market. October is the fourth straight month that suppliers worldwide reported spare capacity, with notable contractions in factory demand across North America and Europe, underscoring the challenging outlook for Western manufacturers," Todd Bremer, vice president, GEP, said in a release. "President-elect Trump inherits U.S. manufacturers with plenty of spare capacity while in contrast, China's modest rebound and strong expansion in India demonstrate greater resilience in Asia."