Thomas H. Davenport is research director of The International Institute for Analytics, president's distinguished professor of IT and management at Babson College, and a senior advisor to Deloitte Consulting LLP.
Many companies today are aggressively employing analytics—the systematic use of quantitative and statistical decision methods—in their businesses. There are many different application domains for analytics, ranging from marketing to human resources to finance. It is only natural, then, that the next generation of supply chains should incorporate a higher and more sophisticated level of analytics.
Applying analytics in supply chain management is not a new idea. The U.S. military adopted a variety of logistical models in World War II, and companies adopted related approaches in the postwar period. UPS, for example, established a logistical analytics group in 1954. Since then, many companies have successfully employed analytical approaches to distribution networks, inventory optimization, forecasting, demand planning, risk management, and other applications. Large retailers, such as Wal-Mart Stores and Target, have had considerable success with supply chain analytics, often working in collaboration with suppliers. And carriers like UPS, FedEx, and Schneider National wouldn't dream of managing their operations without a variety of analytical models.
Yet supply chain-related analytics activities have plateaued in many organizations in recent years. Other than the occasional re-tuning of supply networks that has principally focused on cost management, companies have not taken advantage of all that supply chain analytics can offer to their businesses. Further, even when analytical tools are available to front-line supply chain personnel, the tools often go unused because of a lack of skills or understanding.
We believe that there will be a set of new frontiers in supply chain analytics that will lead to dramatically higher levels of performance. If companies are to achieve these rewards, however, they will have to be more ambitious in their analytical goals and investments. In this article we describe a number of relatively new domains for supply chain analytics as well as the opportunities and primary obstacles for each. We also describe several ways in which the day-to-day usage of supply chain analytics will change in the future.
Connect demand and supply in real time
One of the most important attributes of next-generation supply chain analytics is that they will address issues beyond the supply chain. To optimize operations, companies need to link their supply chains with metrics and analytics on the demand side. For example, at the simplest level, price changes or promotions for products will change demand and hence the required supply of those products. Similarly, changes in the availability of products and components should be reflected in marketing and sales processes.
This integration of supply and demand was pioneered in the 1990s by Dell Computer, which was able to suggest to call-center customers ways to shorten delivery time or take advantage of excess inventory. This was mostly dependent on human decision making: manufacturing supervisors would track supply levels and notify sales and marketing managers, who would then promote or downplay particular items and configurations based on their availability. But in a real-time, online business environment, companies will need to have analytical models in place that will continuously integrate supply and demand without human intervention. Such models would, for example, automatically extend offers and promotions to customers based on the availability of inventory and components. There has been a shortage of initiatives in this area since Dell's pioneering work, but the direction for future innovations is clear.
The analytics needed for such models are not terribly difficult, though they would require considerable iteration and tuning. The primary obstacle to implementation generally is a lack of collaboration among multiple transaction systems, in a way that allows companies to make informed decisions in real time.
Analyze supplier risk
Many companies recognize that the success of their operations is highly dependent upon their suppliers. Yet supplier risk analytics have hardly moved beyond simple metrics and reports in most organizations. The most sophisticated approaches to supplier risk monitoring and management—used by companies that heavily depend on external suppliers and contract manufacturers, such as Cisco Systems—are only somewhat more analytical.
One example is the creation of a supplier resiliency score based on several variables. The variables are based on logic (for instance, reports of bad weather near suppliers' manufacturing locations). If the variables or the overall resiliency scores suggest a problem, companies can then pursue secondary sourcing or work with existing suppliers to identify alternate locations. These scoring models increasingly incorporate relatively subjective factors, such as perceived economic and political risk. But while supplier risk and resiliency scores are undeniably useful tools, with few exceptions they are not yet based on statistical analysis.
Of particular interest to many companies now is whether critical suppliers that weathered the last economic downturn will be capable of meeting increased demand during an upturn. Analytic tools that incorporate public, third-party data can help companies assess this risk.
As companies accumulate more experience with supplier risk, they can begin to create predictive statistical models that are based on actual supplier failures. This would, of course, require tracking and analyzing a sufficient number of actual supplier failures to allow them to accurately identify attributes associated with failure.
Interestingly, the current leaders in statistically assessing supplier risk generally are not the manufacturers but the firms that insure them against such risk. Because the insurance industry has a strong actuarial tradition, firms such as Aon and Marsh have developed statistical models of the likelihood of supply and supplier risks. The key variables considered in these models are the frequency and severity of those risks.
Take advantage of sensors
One of the primary drivers of analytics in organizations is the availability of extensive data. As their use expands, new sensors—in particular, radio frequency identification (RFID)—will make dramatic amounts of data increasingly available for the next generation of supply chains.
For more than a decade, supply chain managers have been bombarded with warnings that RFID devices and networks will change their lives. Thus far, however, the high price of RFID technology has prevented widespread deployment from taking place. But prices for RFID tags and readers continue to fall, albeit slowly, and the adoption rate is gradually rising. At some point in the next several years, most manufacturers and retailers are expected to deploy some degree of RFID capability. When that happens, a great deal of RFID-generated data will be available for analysis. Initial applications using RFID data will primarily be transactional, but shortly thereafter organizations will want to monitor and optimize the efficiency and effectiveness of their RFID networks. This set of applications will demand the use of sophisticated supply chain analytics.
Some companies have employed RFID analytics for several years. For example, Daisy Brand, a dairy products manufacturer in the United States, began using RFID analytics in 2007 to track how long it takes products to reach the store shelf as well as replenishment rates. Prediction of replenishment rates is particularly important during promotions. In addition to RFID data, Daisy Brand also makes extensive use of Wal- Mart Stores' Retail Link data, which provides suppliers with weekly point-of-sale and inventory information, in its analyses.1
Sensors for more expensive and substantial supply chain assets are already in wide use. Some major carriers, for example, are deploying geographic positioning system (GPS)-based telematics devices in trucks and trains. These devices provide a wide variety of data about driving behavior, speeds under various conditions, traffic, and fuel consumption. Companies such as UPS and Schneider have already employed telematics data to redesign logistical networks in whole or in part. UPS, in fact, is using telematics data to redesign and optimize its entire delivery network for only the third time in its more than 100-year history.
Other types of sensors are likely to lead to a flood of additional data—and opportunities to analyze it. RFID and telematics sensors primarily track location, but so-called ILC (identification, location, condition) sensors can also monitor the condition of goods in the supply chain. ILC sensors monitor such variables as light, temperature, tilt angle, gravitational forces, and whether a package has been opened. They can transfer data in real time via cellular networks. Obviously, the potential to identify supply chain problems in real time and take immediate corrective action is greatly enhanced with this technology. We have only begun to consider how analytics might be used to enhance the value of ILC-derived data.
Improving analytical "literacy"
The next-generation approaches to supply chain analytics involve not only new applications but also new ways to ensure that analytics are used to make strategic and tactical decisions. Unfortunately, better decision making in supply chain management is often hindered by the inability of managers and front-line personnel to understand and apply analytical models.
We have encountered several companies that had considerably upgraded the analytical capabilities of their information systems (for example, by adding advanced planning and optimization modules for enterprise resource planning [ERP] systems) but had made no changes in associated personnel or their analytical skills. As one supply chain manager told us, "We need only half the people to do the work with these new tools, but they need to be twice as smart." For supply chain personnel to become smarter about analytics, they must be educated about analytics and their implications, retrained, or in some situations even replaced.
There are a variety of approaches to achieving the desired level of analytical literacy. The motor carrier Schneider National, for example, has developed a simulation- based game to communicate the importance of analytical thinking in dispatching trucks and trailers. The goal of the game is to minimize variable costs for a given amount of revenue while maximizing the driver's time on the road. Decisions to accept loads or move empty trucks are made by the players, who are aided by decision-support tools. Schneider uses the game to help its own personnel understand the value of analytical decision aids, to communicate the dynamics of the business, and to change the mindset of employees from "order takers" to "profit makers." Some Schneider customers have also played the game.
Another way to facilitate the understanding of supply chain analytics is through simpler applications with narrow functionality. Increasingly referred to as "analytical apps," these tools are similar to the applications found on smartphones. They support a single decision and often are industry-specific. Several business intelligence and analytics software vendors are introducing them, and they promise to make the use of analytics much simpler and available to users who do not have extensive analytical or technological skills. Analytical apps that have already been developed for supply chain functions include tools for supplier evaluation, inventory performance analysis, transportation analytics, and transportation contract compliance. There undoubtedly will be many others over the next several years.
Perhaps the only way to guarantee the use of analytics in supply chain management is to embed them into supply chain-oriented systems and processes. No human would be involved in the decision unless there is an exception. For example, certain supply chain decisions made at least partially on the basis of statistics and probability (such as available-to-promise inventory, or the likelihood that an ordered product will be returned by the customer) could be embedded in an order management system. Vendors of ERP systems expect to have such capabilities in the next several years.
The future of supply chain analytics
The use of such tools as ERP systems, the Internet, RFID, and telematics is becoming more common, and more organizations are generating considerable amounts of high-quality data. Now that companies have more and better data than ever before, it is only natural that they would begin to use it to analyze, optimize, and make predictions about their supply chains.
The most common analytical activities thus far have been descriptive—straightforward reports about what has happened in the past. But in future supply chains, we expect to see more prediction and even prescription—that is, optimization and testing models that tell supply chain managers what they should do to improve performance.
Employing emerging supply chain technologies and process improvements has always been an important path to competitive advantage. We believe the next major approach to supply chain-based competition will involve the extensive use of analytics.
Endnote:
1. Claire Swedberg, "Daisy Brand Benefits From RFID Analytics," RFID Journal, January 8, 2008.
First, 54% of retailers are looking for ways to increase their financial recovery from returns. That’s because the cost to return a purchase averages 27% of the purchase price, which erases as much as 50% of the sales margin. But consumers have their own interests in mind: 76% of shoppers admit they’ve embellished or exaggerated the return reason to avoid a fee, a 39% increase from 2023 to 204.
Second, return experiences matter to consumers. A whopping 80% of shoppers stopped shopping at a retailer because of changes to the return policy—a 34% increase YoY.
Third, returns fraud and abuse is top-of-mind-for retailers, with wardrobing rising 38% in 2024. In fact, over two thirds (69%) of shoppers admit to wardrobing, which is the practice of buying an item for a specific reason or event and returning it after use. Shoppers also practice bracketing, or purchasing an item in a variety of colors or sizes and then returning all the unwanted options.
Fourth, returns come with a steep cost in terms of sustainability, with returns amounting to 8.4 billion pounds of landfill waste in 2023 alone.
“As returns have become an integral part of the shopper experience, retailers must balance meeting sky-high expectations with rising costs, environmental impact, and fraudulent behaviors,” Amena Ali, CEO of Optoro, said in the firm’s “2024 Returns Unwrapped” report. “By understanding shoppers’ behaviors and preferences around returns, retailers can create returns experiences that embrace their needs while driving deeper loyalty and protecting their bottom line.”
Facing an evolving supply chain landscape in 2025, companies are being forced to rethink their distribution strategies to cope with challenges like rising cost pressures, persistent labor shortages, and the complexities of managing SKU proliferation.
1. Optimize labor productivity and costs. Forward-thinking businesses are leveraging technology to get more done with fewer resources through approaches like slotting optimization, automation and robotics, and inventory visibility.
2. Maximize capacity with smart solutions. With e-commerce volumes rising, facilities need to handle more SKUs and orders without expanding their physical footprint. That can be achieved through high-density storage and dynamic throughput.
3. Streamline returns management. Returns are a growing challenge, thanks to the continued growth of e-commerce and the consumer practice of bracketing. Businesses can handle that with smarter reverse logistics processes like automated returns processing and reverse logistics visibility.
4. Accelerate order fulfillment with robotics. Robotic solutions are transforming the way orders are fulfilled, helping businesses meet customer expectations faster and more accurately than ever before by using autonomous mobile robots (AMRs and robotic picking.
5. Enhance end-of-line packaging. The final step in the supply chain is often the most visible to customers. So optimizing packaging processes can reduce costs, improve efficiency, and support sustainability goals through automated packaging systems and sustainability initiatives.
That clash has come as retailers have been hustling to adjust to pandemic swings like a renewed focus on e-commerce, then swiftly reimagining store experiences as foot traffic returned. But even as the dust settles from those changes, retailers are now facing renewed questions about how best to define their omnichannel strategy in a world where customers have increasing power and information.
The answer may come from a five-part strategy using integrated components to fortify omnichannel retail, EY said. The approach can unlock value and customer trust through great experiences, but only when implemented cohesively, not individually, EY warns.
The steps include:
1. Functional integration: Is your operating model and data infrastructure siloed between e-commerce and physical stores, or have you developed a cohesive unit centered around delivering seamless customer experience?
2. Customer insights: With consumer centricity at the heart of operations, are you analyzing all touch points to build a holistic view of preferences, behaviors, and buying patterns?
3. Next-generation inventory: Given the right customer insights, how are you utilizing advanced analytics to ensure inventory is optimized to meet demand precisely where and when it’s needed?
4. Distribution partnerships: Having ensured your customers find what they want where they want it, how are your distribution strategies adapting to deliver these choices to them swiftly and efficiently?
5. Real estate strategy: How is your real estate strategy interconnected with insights, inventory and distribution to enhance experience and maximize your footprint?
When approached cohesively, these efforts all build toward one overarching differentiator for retailers: a better customer experience that reaches from brand engagement and order placement through delivery and return, the EY study said. Amid continued volatility and an economy driven by complex customer demands, the retailers best set up to win are those that are striving to gain real-time visibility into stock levels, offer flexible fulfillment options and modernize merchandising through personalized and dynamic customer experiences.
Geopolitical rivalries, alliances, and aspirations are rewiring the global economy—and the imposition of new tariffs on foreign imports by the U.S. will accelerate that process, according to an analysis by Boston Consulting Group (BCG).
Without a broad increase in tariffs, world trade in goods will keep growing at an average of 2.9% annually for the next eight years, the firm forecasts in its report, “Great Powers, Geopolitics, and the Future of Trade.” But the routes goods travel will change markedly as North America reduces its dependence on China and China builds up its links with the Global South, which is cementing its power in the global trade map.
“Global trade is set to top $29 trillion by 2033, but the routes these goods will travel is changing at a remarkable pace,” Aparna Bharadwaj, managing director and partner at BCG, said in a release. “Trade lanes were already shifting from historical patterns and looming US tariffs will accelerate this. Navigating these new dynamics will be critical for any global business.”
To understand those changes, BCG modeled the direct impact of the 60/25/20 scenario (60% tariff on Chinese goods, a 25% on goods from Canada and Mexico, and a 20% on imports from all other countries). The results show that the tariffs would add $640 billion to the cost of importing goods from the top ten U.S. import nations, based on 2023 levels, unless alternative sources or suppliers are found.
In terms of product categories imported by the U.S., the greatest impact would be on imported auto parts and automotive vehicles, which would primarily affect trade with Mexico, the EU, and Japan. Consumer electronics, electrical machinery, and fashion goods would be most affected by higher tariffs on Chinese goods. Specifically, the report forecasts that a 60% tariff rate would add $61 billion to cost of importing consumer electronics products from China into the U.S.
That strategy is described by RILA President Brian Dodge in a document titled “2025 Retail Public Policy Agenda,” which begins by describing leading retailers as “dynamic and multifaceted businesses that begin on Main Street and stretch across the world to bring high value and affordable consumer goods to American families.”
RILA says its policy priorities support that membership in four ways:
Investing in people. Retail is for everyone; the place for a first job, 2nd chance, third act, or a side hustle – the retail workforce represents the American workforce.
Ensuring a safe, sustainable future. RILA is working with lawmakers to help shape policies that protect our customers and meet expectations regarding environmental concerns.
Leading in the community. Retail is more than a store; we are an integral part of the fabric of our communities.
“As Congress and the Trump administration move forward to adopt policies that reduce regulatory burdens, create economic growth, and bring value to American families, understanding how such policies will impact retailers and the communities we serve is imperative,” Dodge said. “RILA and its member companies look forward to collaborating with policymakers to provide industry-specific insights and data to help shape any policies under consideration.”