Why “Experiential AI” is a smart choice for supply chain leaders
Incorporating human experience and intuition into the training and feedback stages of artificial intelligence yields better insights, greater efficiency, and more ethical outcomes.
The larger and more complex supply chains become, the more vulnerable they are to disruptions. Pressures such as market volatility, tightening labor, inflation, weather events, and supply shortages have a cascading effect on the global movement of goods.
The good news is that, thanks to the proliferation of sensors, cameras, and digital tools, many of these conditions can be captured in data—a lot of data. Artificial intelligence (AI) gives us a means of understanding that data. This technology can be used to dynamically analyze complex data sets, helping companies predict demand, identify trade-offs, and optimize delivery routes. Together with subsets like machine learning (ML), which utilizes training data and feedback to progressively improve accuracy, AI allows firms to illuminate and even predict supply chain disruptions before they occur. More than anything, AI can help supply chain managers make better, more informed decisions.
While many supply chain managers are aware of the potential of AI, a common stereotype is that AI will replace humans by fully automating data analysis and decision-making. That is not the case. While AI does rely on data analysis to deliver recommendations, often the full story of what is happening in the supply chain cannot be completely captured by the available data. Instead, recognition of many issues and their causes can come only from a human’s prior experience and intuition.
At the Institute for Experiential AI (EAI) at Northeastern University, we have found that human involvement is an important part of getting the most out of artificial intelligence. With a human involved at all stages of the AI “training” and ongoing feedback process, the technology does a better job of increasing efficiency, yielding more ethical outcomes, and providing insights that improve bottom-line performance—better than it would without human involvement. We call this human-centric approach to AI “experiential AI.”
The goal of experiential AI is to augment what humans do best (such as intuitive decision-making under uncertainty, common-sense reasoning, and understanding real-world complexity and subtlety) with what machines do best (such as crunching large amounts of data and documents, performing repetitive/robotic tasks, and operating at speed and scale) to achieve more robust, ethical, and resilient solutions.
Most successful AI applications, in fact, depend on soliciting human input and feedback to ensure accuracy. In order to “train” an AI model or machine learning algorithm to generate the right analysis, you need to provide it with a large set of training data. The best way to get reliable training data is by soliciting input from humans. An experiential AI approach involves soliciting that input in the most efficient and meaningful way possible.
Furthermore, no AI algorithm will be completely error-free. All algorithms require human feedback and confirmation that they are executing efficiently and that their outputs are correct and relevant. The difficult thing is to figure out when an algorithm should seek that feedback and confirmation. Another challenge is to make this act natural and intuitive and to be selective about when to ask for an intervention. Experiential AI can be very helpful in this regard by ensuring that intervention by humans is done efficiently (for both human and machine) and at the right time to maximize learning opportunities for both machine and human. This is an essential ingredient for building trust in the AI technology among human users and operators.
Experiential AI, then, provides a way to get the needed training data, interventions, and human guidance in the context of normal operations so the AI can learn from each interaction. This human involvement also helps AI to generate informed and ethical decisions.
For example, before the COVID-19 pandemic, cutting costs might have sufficed to minimize the impact of problems in the supply chain. Recent pandemic-related disruptions, including staffing shortages and low inventories, however, have shifted companies’ focus from efficiency back to resiliency, which a growing number of economists argue comes at a loss to efficiency, and vice versa. But we believe that efficiency and resilience need not be adversarial. With a human in the loop, AI models can be consistently and naturally modified to deliver better performance, consistent and measurable return on investment (ROI), and long-term adaptability.
Key supply chain applications
There is good reason for supply chain managers to explore how to apply artificial intelligence in their operations. The global management consulting firm McKinsey & Co. estimates that by adopting AI in the supply chain, companies and their customers stand to gain $1.2 trillion to $2 trillion in economic value globally. With such an opportunity on the table, it’s important to survey which areas of the supply chain are most ripe for benefiting from AI. The Institute for Experiential AI sees three core areas of opportunity: transportation and delivery, warehousing and inventory management, and analysis and decision-making.
1.Transportation and delivery. A complex supply chain is not necessarily a resilient one. Each junction in the movement of goods introduces new variables and logistical hurdles. In turn, decision-makers must select from an increasingly complex network of routing and delivery models. As the inputs stack up—think of adding to a growing tower of playing cards—the long-term resilience of the system begins to buckle. The task of supply chain managers then becomes to find and adopt end-to-end solutions that can forecast demand, mitigate risk, and account for multiple variables and distribution routes.
AI makes that possible. Supply chain managers can now use machine learning to process the complex data streams that undergird logistics networks. For example, they can take real-time traffic and global positioning system (GPS) data and use machine learning to identify and select from potentially trillions of delivery routes. They can also use predictive analytics solutions that are enabled by AI to anticipate and plan for demand surges, mechanical failures, shipping updates, or disruptive weather events. AI systems can also monitor news snippets, audio messages, sensor data, text alerts, and other unstructured data and inform decision-makers when a disruption has occurred.
Cold Chain Technologies—a company in the life sciences sector that ships and handles heat-sensitive drugs, pharmaceuticals, vaccines, and biologics—uses AI to monitor, route, and deliver thermal-assurance packages. The company requires transportation solutions that are able to maintain consistent temperatures across the supply chain. (This is critical for transporting COVID-19 vaccines, for example.)
Thermal packaging requires specialized internet of things (IoT) sensors and measuring devices that produce streams of data that algorithms can harness to map real-time conditions in the supply chain. But, as CEO Ranjeet Banerjee explains, the task for supply chain managers is not merely to automate processes, but to forge a path through the technological landscape with human decision-makers at the helm. Value, then, derives from top-level decision-making and human involvement.
“You have to start with the problems, define the use cases, define the value potential, and then come up with a cadence of solutions,” Banerjee says. “But it’s not one-and-done. It’s merely to provide a roadmap of new value.”
2. Warehousing and inventory management. Supply chain leaders have the demanding responsibility of balancing supply and demand. To support that effort, warehouse and inventory managers are turning to machine learning. Machine learning can be used to monitor supply routes, predict lead times, and fulfill orders. In many cases, machine learning can perform these tasks with near or absolute autonomy. However, from a risk management standpoint, it is crucial that the degree of autonomy be customizable so that mission-critical decisions remain in human hands while the ML supplies decision-makers with real-time data.
For instance, inventory managers tasked with balancing warehousing capacities with inbound and outbound deliverables can leverage machine vision to assist in stocking and fulfillment. Computer vision software can monitor the movement of goods and alert managers when supplies are low. The human managers then make the crucial decisions about how to address this low supply. Other tools like automated product classification and AI-powered robotics offer cost-cutting efficiencies that can help optimize the fulfillment process and improve lead times.
3. Analysis and decision-making. Across applications, AI empowers supply chain leaders with sophisticated data tools and end-to-end supply chain visualization. On-the-ground data can be quantified and delivered to AI-enabled systems that can then analyze that data and present it to decision-makers as actionable information. For example, details about how shipping containers are loaded or unloaded can be analyzed by AI to inform decisions about how deliveries should be ordered so that routes are created in the most efficient way possible. AI can also be used by supply chain leaders in the event of a disruption to locate alternative routes, suppliers, or delivery models, saving them time and energy when exploring remedies. Other algorithms and data sets can be used to streamline costs. It’s no surprise, then, that leading firms use data-driven AI to manage carriers, negotiate optimal rates, understand risks, and inform bottom-line financial decisions.
One promising development that is helping drive better decision making across the entire supply chain is the new field of cognitive analytics. Cognitive analytics gives structure to large data sets in forms more relatable to linguistic processing. Such systems can learn from interactions between data and human supervisors to provide detailed, contextualized insights. These insights can be used to connect different areas of the supply chain in a more transparent fashion. And that transparency is key. As Nada Sanders, Distinguished Professor of Supply Chain Management at the D’Amore-McKim School of Business at Northeastern University, points out, successful firms understand that technology that offers transparency between silos in the supply chain is superior to a sophisticated system whose analysis is narrow and deep. In other words, if you only have one very deep technology in one area, then you’ll likely be exposing your operation to variables that would only be visible from a broader, more systemic view.
“When you look at supply chains, the key is to understand that they’re a system; you need to have information transfer, and you need transparency because information flows, products flow,” Sanders says.
Responsible AI in the supply chain
On their own, data analysis and AI can point to bottlenecks, excesses, and oversights in the supply chain. In ideal circumstances, those insights lead to more efficient outcomes. But their true power lies in contextualization—a task generally more suited to humans than AI. For example, AI can fortify and streamline supply chain operations, but these improvements must be carried out in an ethical and responsible way. Having humans in the task loop can make sure that this occurs.
In many applications, algorithms have exhibited latent biases that exclude marginalized people while reinforcing power discrepancies. Facial-recognition tools, for example, have been shown to regularly misidentify people of color. Language models may likewise perpetuate linguistic hegemonies. If these algorithms can run afoul of ethical concerns in social contexts, then they can do the same in supply chains. One widespread example occurs in hiring and recruiting, where AI has been demonstrated to show biases toward privileged groups. Additionally, systems that are automated to select suppliers based on pricing or logistical efficiencies may overlook exploitative labor practices or even sanction regimes that human decision-makers would know to steer clear of.
That is why leading researchers and chief technology officers (CTOs) point to transparency and human-led AI as the only reliable way to secure the responsible use of algorithms. Cold Chain Technologies’ Ranjeet Banerjee acknowledges this, underscoring the value of AI in augmenting, rather than replacing, human intelligence.
“The easy decisions are the ones you automate first,” Banerjee says. “Then you use [automation] to increase the bandwidth of the human. Over time you create a feedback loop, and you see how the actual worked against the prediction, and then you can use the human intervention more thoughtfully.”
It’s crucial to understand that this process is continual. There is no “one and done” ethical AI solution. That means companies may need to upskill or retrain their employees or restructure their organization to secure the promised benefits of AI in supply chains.
Tying insights to the bottom line
As supply chains become even more complicated in response to ballooning data sets, political upheaval, climate disruptions, and increasingly sophisticated algorithmic tools, enterprises will need to look at the wider picture. As Nada Sanders says, it’s not just about logistics.
“It’s money, it’s people, it’s information,” she says. “It’s the linkage of marketing on the demand side and how we sell something, the messaging. They’re all connected, and understanding that system is really where the human element coupled with AI comes into play.”
AI in the supply chain offers scalable levels of visibility, granular oversight of logistics, and dynamic feedback to support human-driven decisions. But these opportunities may require organizational refocusing as companies seek the right tools to measure and quantify outcomes. When it comes to assessing the value of AI and which solutions to focus on, they may need to take a long-term investment approach rather than zeroing in on a few widely used metrics to measure their ROI.
Supply chain leaders may see experiential AI as a means to function at scale, increase the bottom line, and create value for their customers, but with AI and large-scale data analytics still in their infancy, they may not know how to go about implementing it. For the time being, end-to-end AI solutions that dodge the most pressing ethical and technical pitfalls can be found in the B2B market. But it’s also true that many organizations simply don’t need such a comprehensive solution. A better approach for many supply chain organizations is to identify the problem to be solved, measure its scope in the form of data, and then seek out AI experts who can help design, develop, and implement an effective solution that addresses the organization’s specific needs.
The practice consists of 5,000 professionals from Accenture and from Avanade—the consulting firm’s joint venture with Microsoft. They will be supported by Microsoft product specialists who will work closely with the Accenture Center for Advanced AI. Together, that group will collaborate on AI and Copilot agent templates, extensions, plugins, and connectors to help organizations leverage their data and gen AI to reduce costs, improve efficiencies and drive growth, they said on Thursday.
Accenture and Avanade say they have already developed some AI tools for these applications. For example, a supplier discovery and risk agent can deliver real-time market insights, agile supply chain responses, and better vendor selection, which could result in up to 15% cost savings. And a procure-to-pay agent could improve efficiency by up to 40% and enhance vendor relations and satisfaction by addressing urgent payment requirements and avoiding disruptions of key services
Likewise, they have also built solutions for clients using Microsoft 365 Copilot technology. For example, they have created Copilots for a variety of industries and functions including finance, manufacturing, supply chain, retail, and consumer goods and healthcare.
Another part of the new practice will be educating clients how to use the technology, using an “Azure Generative AI Engineer Nanodegree program” to teach users how to design, build, and operationalize AI-driven applications on Azure, Microsoft’s cloud computing platform. The online classes will teach learners how to use AI models to solve real-world problems through automation, data insights, and generative AI solutions, the firms said.
“We are pleased to deepen our collaboration with Accenture to help our mutual customers develop AI-first business processes responsibly and securely, while helping them drive market differentiation,” Judson Althoff, executive vice president and chief commercial officer at Microsoft, said in a release. “By bringing together Copilots and human ambition, paired with the autonomous capabilities of an agent, we can accelerate AI transformation for organizations across industries and help them realize successful business outcomes through pragmatic innovation.”
Census data showed that overall retail sales in October were up 0.4% seasonally adjusted month over month and up 2.8% unadjusted year over year. That compared with increases of 0.8% month over month and 2% year over year in September.
October’s core retail sales as defined by NRF — based on the Census data but excluding automobile dealers, gasoline stations and restaurants — were unchanged seasonally adjusted month over month but up 5.4% unadjusted year over year.
Core sales were up 3.5% year over year for the first 10 months of the year, in line with NRF’s forecast for 2024 retail sales to grow between 2.5% and 3.5% over 2023. NRF is forecasting that 2024 holiday sales during November and December will also increase between 2.5% and 3.5% over the same time last year.
“October’s pickup in retail sales shows a healthy pace of spending as many consumers got an early start on holiday shopping,” NRF Chief Economist Jack Kleinhenz said in a release. “October sales were a good early step forward into the holiday shopping season, which is now fully underway. Falling energy prices have likely provided extra dollars for household spending on retail merchandise.”
Despite that positive trend, market watchers cautioned that retailers still need to offer competitive value propositions and customer experience in order to succeed in the holiday season. “The American consumer has been more resilient than anyone could have expected. But that isn’t a free pass for retailers to under invest in their stores,” Nikki Baird, VP of strategy & product at Aptos, a solutions provider of unified retail technology based out of Alpharetta, Georgia, said in a statement. “They need to make investments in labor, customer experience tech, and digital transformation. It has been too easy to kick the can down the road until you suddenly realize there’s no road left.”
A similar message came from Chip West, a retail and consumer behavior expert at the marketing, packaging, print and supply chain solutions provider RRD. “October’s increase proved to be slightly better than projections and was likely boosted by lower fuel prices. As inflation slowed for a number of months, prices in several categories have stabilized, with some even showing declines, offering further relief to consumers,” West said. “The data also looks to be a positive sign as we kick off the holiday shopping season. Promotions and discounts will play a prominent role in holiday shopping behavior as they are key influencers in consumer’s purchasing decisions.”
That result came from the company’s “GEP Global Supply Chain Volatility Index,” an indicator tracking demand conditions, shortages, transportation costs, inventories, and backlogs based on a monthly survey of 27,000 businesses. The October index number was -0.39, which was up only slightly from its level of -0.43 in September.
Researchers found a steep rise in slack across North American supply chains due to declining factory activity in the U.S. In fact, purchasing managers at U.S. manufacturers made their strongest cutbacks to buying volumes in nearly a year and a half, indicating that factories in the world's largest economy are preparing for lower production volumes, GEP said.
Elsewhere, suppliers feeding Asia also reported spare capacity in October, albeit to a lesser degree than seen in Western markets. Europe's industrial plight remained a key feature of the data in October, as vendor capacity was significantly underutilized, reflecting a continuation of subdued demand in key manufacturing hubs across the continent.
"We're in a buyers' market. October is the fourth straight month that suppliers worldwide reported spare capacity, with notable contractions in factory demand across North America and Europe, underscoring the challenging outlook for Western manufacturers," Todd Bremer, vice president, GEP, said in a release. "President-elect Trump inherits U.S. manufacturers with plenty of spare capacity while in contrast, China's modest rebound and strong expansion in India demonstrate greater resilience in Asia."
Even as the e-commerce sector overall continues expanding toward a forecasted 41% of all retail sales by 2027, many small to medium e-commerce companies are struggling to find the investment funding they need to increase sales, according to a sector survey from online capital platform Stenn.
Global geopolitical instability and increasing inflation are causing e-commerce firms to face a liquidity crisis, which means companies may not be able to access the funds they need to grow, Stenn’s survey of 500 senior e-commerce leaders found. The research was conducted by Opinion Matters between August 29 and September 5.
Survey findings include:
61.8% of leaders who sought growth capital did so to invest in advanced technologies, such as AI and machine learning, to improve their businesses.
When asked which resources they wished they had more access to, 63.8% of respondents pointed to growth capital.
Women indicated a stronger need for business operations training (51.2%) and financial planning resources (48.8%) compared to men (30.8% and 15.4%).
40% of business owners are seeking external financial advice and mentorship at least once a week to help with business decisions.
Almost half (49.6%) of respondents are proactively forecasting their business activity 6-18 months ahead.
“As e-commerce continues to grow rapidly, driven by increasing online consumer demand and technological innovation, it’s important to remember that capital constraints and access to growth financing remain persistent hurdles for many e-commerce business leaders especially at small and medium-sized businesses,” Noel Hillman, Chief Commercial Officer at Stenn, said in a release. “In this competitive landscape, ensuring liquidity and optimizing supply chain processes are critical to sustaining growth and scaling operations.”
With six keynote and more than 100 educational sessions, CSCMP EDGE 2024 offered a wealth of content. Here are highlights from just some of the presentations.
A great American story
Author and entrepreneur Fawn Weaver closed out the first day of the conference by telling the little-known story of Nathan “Nearest” Green, who was born into slavery, freed after the Civil War, and went on to become the first master distiller for the Jack Daniel’s Whiskey brand. Through extensive research and interviews with descendants of the Daniel and Green families, Weaver discovered what she describes as a positive American story.
She told the story in her best-selling book, Love & Whiskey: The Remarkable True Story of Jack Daniel, His Master Distiller Nearest Green, and the Improbable Rise of Uncle Nearest. That story also inspired her to create Uncle Nearest Premium Whiskey.
Weaver discussed the barriers she encountered in bringing the brand to life, her vision for where it’s headed, and her take on the supply chain—which she views as both a necessary cost of doing business and an opportunity.
“[It’s] an opportunity if you can move quickly,” she said, pointing to a recent project in which the company was able to fast-track a new Uncle Nearest product thanks to close collaboration with its supply chain partners.
A two-pronged business transformation
We may be living in a world full of technology, but strategy and focus remain the top priorities when it comes to managing a business and its supply chains. So says Roberto Isaias, executive vice president and chief supply chain officer for toy manufacturing and entertainment company Mattel.
Isaias emphasized the point during his keynote on day two of EDGE 2024. He described how Mattel transformed itself amid surging demand for Barbie-branded items following the success of the Barbie movie.
That transformation, according to Isaias, came on two fronts: commercially and logistically. Today, Mattel is steadily moving beyond the toy aisle with two films and 13 TV series in production as well as 14 films and 35 shows in development. And as for those supply chain gains? The company has saved millions, increased productivity, and improved profit margins—even amid cost increases and inflation.
A framework for chasing excellence
Most of the time when CEOs present at an industry conference, they like to talk about their companies’ success stories. Not J.B. Hunt’s Shelley Simpson. Speaking at EDGE, the trucking company’s president and CEO led with a story about a time that the company lost a major customer.
According to Simpson, the company had a customer of their dedicated contract business in 2001 that was consistently making late shipments with no lead time. “We were working like crazy to try to satisfy them, and lost their business,” Simpson said.
When the team at J.B. Hunt later met with the customer’s chief supply chain officer and related all they had been doing, the customer responded, “You never shared everything you were doing for us.”
Out of that experience, came J.B. Hunt’s Customer Value Delivery framework. The framework consists of five steps: 1) understand customer needs, 2) deliver expectations, 3) measure results, 4) communicate performance, and 5) anticipate new value.
Next year’s CSCMP EDGE conference on October 5–8 in National Harbor, Md., promises to have a similarly deep lineup of keynote presentations. Register early at www.cscmpedge.org.