A practical application of AI in inventory management
Inventory management for spare parts for an ocean vessel is a tricky proposition. Not only do you need to carry the right inventory in the right amounts to address a variety of hard-to-predict circumstances, but you also need to actually have the space for it on board. Artificial intelligence and machine learning can help achieve this delicate balance.
Leo Cataldino has extensive international planning, project management, forecasting, reengineering, and supply chain management experience. He is a partner-manager and principal in the Logistics practice of ToolsGroup, a global firm focused on AI-driven supply chain planning.
When it comes to optimizing transportation, logistics, and shipping, artificial intelligence (AI) and machine learning (ML) algorithms have a vital new role to play. While getting the right product in the desired quantity and at the lowest price sounds easy in theory, many variable factors are in constant play, including data flows too massive to be managed by human operators, continuous disruptions in the distribution chain, fuel price volatility, the presence of multiple suppliers for the same products, and ever-changing, unpredictable levels of consumer demand.
To forecast future inventory needs, all sectors of logistics are therefore leaning into machine learning (ML), the branch of AI that makes machines smarter by feeding them data, from which they can “learn” what to do with it. But nowhere is the need for ML more sharply felt than in the shipping and maritime transportation industry. Here is just one practical application that looks at best practices in AI as they apply to shipping: predictive maintenance and spare parts management.
Optimizing parts management
Focused on the need for predictive maintenance on ships, this case study relates to our parts optimization work with a company that does drilling and exploration for new oil deposits. This company uses ships called FPSOs, which stands for Floating, Production, Storage, and Offloading. FPSOs are vessels used in the oil industry in locations far from the coast that cannot be reached by oil or gas pipelines. The management of spare parts in this type of vessel must take into account that the ship is an itinerant warehouse with very limited space.
This company's main objectives, therefore, were to avert stock breakdowns, increase the availability of spare parts, and avoid so-called “dead stock,” that is, the storage of materials that take up space unnecessarily on board.
ToolsGroup started by conducting a preliminary audit, for which we collected and validated master data of spare parts and ships, stock levels, history of consumption, and other statistics relating to the consumption of and demand for parts.
Next, we developed an artificial intelligence algorithm to address a “what-if” maintenance need that went beyond traditional preventive maintenance—in other words, the AI we engaged served to enable predictions and scenario planning. In so doing, we effectively built the shipping company a new business model that enabled them to better manage the process of predicting what spare parts each ship would need, taking into account all the logistics constraints.
While this process began with analyzing the current performance of these FSPO vessels, we were able to propose an entirely new business analysis and optimization model that allowed a view into “what-if” scenarios and evaluated different options for resolving them.
Typically, traditional preventive maintenance is an evaluation of all factors related to cyclicality or past events. But by plugging in multiple eventualities, the system was able to predict the need for given replacements outside the normal range of maintenance and expected breakdowns or timed obsolescence. Using AI thus allowed us to forecast or predict which spare parts would be needed and which should be on hand preventively, optimizing inventory levels and the transport of spare parts. In this case, we developed a form of machine learning comprising a self-adapting and self-learning algorithm specific to maintenance, repair, and operations on these ships. The system is also capable of calculating advanced consumption forecasts of parts. Hence the optimization of stock levels of mechanical spare parts and consumables, with stock levels based precisely on forecast algorithms, answered to the need for safety as well as convenience on these vessels—along with not getting stranded at sea.
The supply chain planning software the shipping company adopted used a phased approach—that is, we introduced the implementation in a conscious sequence, replacing old systems, processes, and methodologies gradually. We used probability forecasting and machine learning technologies that were designed to work together seamlessly and automatically. Starting from a basis of data on historical demand, the ML engine went on to improve the baseline probability forecasts by applying machine learning technology to the existing historical data. This helped to produce a more robust, reliable baseline forecast that accurately models the phenomena shaping the demand. The tool then layers on more sophisticated machine learning by leveraging additional external data sources.
That said, our experience at ToolsGroup suggests that forecasting can’t be completely based on machine learning techniques. Instead, it requires a solid statistical backbone to deal with the changing and often random nature of demand. In this case, we recommended that the company use a hybrid approach that employs probability forecasting and machine learning technologies which work together seamlessly and automatically.
To do this, we introduced a self-adaptive model for probabilistic forecasting using granular historical demand. We’ve found that for this shipping company and others, this approach is critical to success when using advanced machine learning—and yields significant benefits on its own. Applying machine learning technology to the existing historical data further improves the probability forecast, resulting in a more robust, reliable baseline that accurately models the phenomena shaping the demand. From there, the system can engage in more sophisticated machine learning, using external data sources such as weather forecasts, nautical indicators, availability through distributors and stores, social media and online search, Internet of Things, and more.
Machine learning engines thus improve the calculation of factors that affect demand. For this shipping company, ML produced a more accurate future forecast—resulting in lower costs, optimized inventory of parts needed, and reduced risk of downtime.
The quantitative, qualitative, and green benefits
Beyond helping to resolve some common industry problems, optimizing shipping supply chains has wider implications, as well. In the project discussed here, the benefits were first and foremost quantitative, since stock optimization coincides with the reduction of waste. The approach also enabled the avoidance of two common risks in logistics—stock-outs or the presence of excess stock. There are also qualitative benefits. For example, as planning improves, downstream interventions (and consequently costs resulting from re-negotiation with suppliers) decrease. Finally, greater efficiency is a source of greater sustainability, which is determined both in the reduction of waste and in the containment of potential toxic events. Enhanced forecasting forestalls corrective actions that can correspond to additional and therefore more costly and polluting transportation.
In general, one of the strengths of AI-powered technologies is their ability to crunch multiple demand variables to automatically generate a reliable demand forecast. This “self-tuning” approach allows the system to predict demand behavior much more accurately than considering demand history alone. Supply chain professionals understand the importance of accurate demand forecasting, yet this is a difficult task due to the extreme complexity of modern demand planning. Increasing forecasting complexity and rapidly shifting consumer demand are often exacerbated by seasonality, new product introductions, promotions, and myriad causal factors such as weather and social media. A high level of automated machine learning is an ideal application to improve forecast accuracy in supply chain planning. ML also supports the development of more resilient supply chain planning practices because it enables the whole system to react to changes and disruptions in a timely manner. Businesses that use ML-augmented supply chain platforms can harness real-time data for immediate action and become more resilient and future proof.
Authors’ Note: This case study was presented at a recent conference held in Genoa, Italy, “Digital Infrastructure and Predictive Logistics: Strategies, Risks and Opportunities in Transportation Supply Chain Data Exchange." The event was sponsored by Logistic Digital Community, a virtual community created through the initiative of Confcommercio-Conftrasporto in collaboration with Federlogistica and Consorzio Global.
ReposiTrak, a global food traceability network operator, will partner with Upshop, a provider of store operations technology for food retailers, to create an end-to-end grocery traceability solution that reaches from the supply chain to the retail store, the firms said today.
The partnership creates a data connection between suppliers and the retail store. It works by integrating Salt Lake City-based ReposiTrak’s network of thousands of suppliers and their traceability shipment data with Austin, Texas-based Upshop’s network of more than 450 retailers and their retail stores.
That accomplishment is important because it will allow food sector trading partners to meet the U.S. FDA’s Food Safety Modernization Act Section 204d (FSMA 204) requirements that they must create and store complete traceability records for certain foods.
And according to ReposiTrak and Upshop, the traceability solution may also unlock potential business benefits. It could do that by creating margin and growth opportunities in stores by connecting supply chain data with store data, thus allowing users to optimize inventory, labor, and customer experience management automation.
"Traceability requires data from the supply chain and – importantly – confirmation at the retail store that the proper and accurate lot code data from each shipment has been captured when the product is received. The missing piece for us has been the supply chain data. ReposiTrak is the leader in capturing and managing supply chain data, starting at the suppliers. Together, we can deliver a single, comprehensive traceability solution," Mark Hawthorne, chief innovation and strategy officer at Upshop, said in a release.
"Once the data is flowing the benefits are compounding. Traceability data can be used to improve food safety, reduce invoice discrepancies, and identify ways to reduce waste and improve efficiencies throughout the store,” Hawthorne said.
Under FSMA 204, retailers are required by law to track Key Data Elements (KDEs) to the store-level for every shipment containing high-risk food items from the Food Traceability List (FTL). ReposiTrak and Upshop say that major industry retailers have made public commitments to traceability, announcing programs that require more traceability data for all food product on a faster timeline. The efforts of those retailers have activated the industry, motivating others to institute traceability programs now, ahead of the FDA’s enforcement deadline of January 20, 2026.
Inclusive procurement practices can fuel economic growth and create jobs worldwide through increased partnerships with small and diverse suppliers, according to a study from the Illinois firm Supplier.io.
The firm’s “2024 Supplier Diversity Economic Impact Report” found that $168 billion spent directly with those suppliers generated a total economic impact of $303 billion. That analysis can help supplier diversity managers and chief procurement officers implement programs that grow diversity spend, improve supply chain competitiveness, and increase brand value, the firm said.
The companies featured in Supplier.io’s report collectively supported more than 710,000 direct jobs and contributed $60 billion in direct wages through their investments in small and diverse suppliers. According to the analysis, those purchases created a ripple effect, supporting over 1.4 million jobs and driving $105 billion in total income when factoring in direct, indirect, and induced economic impacts.
“At Supplier.io, we believe that empowering businesses with advanced supplier intelligence not only enhances their operational resilience but also significantly mitigates risks,” Aylin Basom, CEO of Supplier.io, said in a release. “Our platform provides critical insights that drive efficiency and innovation, enabling companies to find and invest in small and diverse suppliers. This approach helps build stronger, more reliable supply chains.”
Logistics industry growth slowed in December due to a seasonal wind-down of inventory and following one of the busiest holiday shopping seasons on record, according to the latest Logistics Managers’ Index (LMI) report, released this week.
The monthly LMI was 57.3 in December, down more than a percentage point from November’s reading of 58.4. Despite the slowdown, economic activity across the industry continued to expand, as an LMI reading above 50 indicates growth and a reading below 50 indicates contraction.
The LMI researchers said the monthly conditions were largely due to seasonal drawdowns in inventory levels—and the associated costs of holding them—at the retail level. The LMI’s Inventory Levels index registered 50, falling from 56.1 in November. That reduction also affected warehousing capacity, which slowed but remained in expansion mode: The LMI’s warehousing capacity index fell 7 points to a reading of 61.6.
December’s results reflect a continued trend toward more typical industry growth patterns following recent years of volatility—and they point to a successful peak holiday season as well.
“Retailers were clearly correct in their bet to stock [up] on goods ahead of the holiday season,” the LMI researchers wrote in their monthly report. “Holiday sales from November until Christmas Eve were up 3.8% year-over-year according to Mastercard. This was largely driven by a 6.7% increase in e-commerce sales, although in-person spending was up 2.9% as well.”
And those results came during a compressed peak shopping cycle.
“The increase in spending came despite the shorter holiday season due to the late Thanksgiving,” the researchers also wrote, citing National Retail Federation (NRF) estimates that U.S. shoppers spent just short of a trillion dollars in November and December, making it the busiest holiday season of all time.
The LMI is a monthly survey of logistics managers from across the country. It tracks industry growth overall and across eight areas: inventory levels and costs; warehousing capacity, utilization, and prices; and transportation capacity, utilization, and prices. The report is released monthly by researchers from Arizona State University, Colorado State University, Rochester Institute of Technology, Rutgers University, and the University of Nevada, Reno, in conjunction with the Council of Supply Chain Management Professionals (CSCMP).
Specifically, the two sides remain at odds over provisions related to the deployment of semi-automated technologies like rail-mounted gantry cranes, according to an analysis by the Kansas-based 3PL Noatum Logistics. The ILA has strongly opposed further automation, arguing it threatens dockworker protections, while the USMX contends that automation enhances productivity and can create long-term opportunities for labor.
In fact, U.S. importers are already taking action to prevent the impact of such a strike, “pulling forward” their container shipments by rushing imports to earlier dates on the calendar, according to analysis by supply chain visibility provider Project44. That strategy can help companies to build enough safety stock to dampen the damage of events like the strike and like the steep tariffs being threatened by the incoming Trump administration.
Likewise, some ocean carriers have already instituted January surcharges in pre-emption of possible labor action, which could support inbound ocean rates if a strike occurs, according to freight market analysts with TD Cowen. In the meantime, the outcome of the new negotiations are seen with “significant uncertainty,” due to the contentious history of the discussion and to the timing of the talks that overlap with a transition between two White House regimes, analysts said.
That percentage is even greater than the 13.21% of total retail sales that were returned. Measured in dollars, returns (including both legitimate and fraudulent) last year reached $685 billion out of the $5.19 trillion in total retail sales.
“It’s clear why retailers want to limit bad actors that exhibit fraudulent and abusive returns behavior, but the reality is that they are finding stricter returns policies are not reducing the returns fraud they face,” Michael Osborne, CEO of Appriss Retail, said in a release.
Specifically, the report lists the leading types of returns fraud and abuse reported by retailers in 2024, including findings that:
60% of retailers surveyed reported incidents of “wardrobing,” or the act of consumers buying an item, using the merchandise, and then returning it.
55% cited cases of returning an item obtained through fraudulent or stolen tender, such as stolen credit cards, counterfeit bills, gift cards obtained through fraudulent means or fraudulent checks.
48% of retailers faced occurrences of returning stolen merchandise.
Together, those statistics show that the problem remains prevalent despite growing efforts by retailers to curb retail returns fraud through stricter returns policies, while still offering a sufficiently open returns policy to keep customers loyal, they said.
“Returns are a significant cost for retailers, and the rise of online shopping could increase this trend,” Kevin Mahoney, managing director, retail, Deloitte Consulting LLP, said. “As retailers implement policies to address this issue, they should avoid negatively affecting customer loyalty and retention. Effective policies should reduce losses for the retailer while minimally impacting the customer experience. This approach can be crucial for long-term success.”