A practical application of AI in inventory management
Inventory management for spare parts for an ocean vessel is a tricky proposition. Not only do you need to carry the right inventory in the right amounts to address a variety of hard-to-predict circumstances, but you also need to actually have the space for it on board. Artificial intelligence and machine learning can help achieve this delicate balance.
Leo Cataldino has extensive international planning, project management, forecasting, reengineering, and supply chain management experience. He is a partner-manager and principal in the Logistics practice of ToolsGroup, a global firm focused on AI-driven supply chain planning.
When it comes to optimizing transportation, logistics, and shipping, artificial intelligence (AI) and machine learning (ML) algorithms have a vital new role to play. While getting the right product in the desired quantity and at the lowest price sounds easy in theory, many variable factors are in constant play, including data flows too massive to be managed by human operators, continuous disruptions in the distribution chain, fuel price volatility, the presence of multiple suppliers for the same products, and ever-changing, unpredictable levels of consumer demand.
To forecast future inventory needs, all sectors of logistics are therefore leaning into machine learning (ML), the branch of AI that makes machines smarter by feeding them data, from which they can “learn” what to do with it. But nowhere is the need for ML more sharply felt than in the shipping and maritime transportation industry. Here is just one practical application that looks at best practices in AI as they apply to shipping: predictive maintenance and spare parts management.
Optimizing parts management
Focused on the need for predictive maintenance on ships, this case study relates to our parts optimization work with a company that does drilling and exploration for new oil deposits. This company uses ships called FPSOs, which stands for Floating, Production, Storage, and Offloading. FPSOs are vessels used in the oil industry in locations far from the coast that cannot be reached by oil or gas pipelines. The management of spare parts in this type of vessel must take into account that the ship is an itinerant warehouse with very limited space.
This company's main objectives, therefore, were to avert stock breakdowns, increase the availability of spare parts, and avoid so-called “dead stock,” that is, the storage of materials that take up space unnecessarily on board.
ToolsGroup started by conducting a preliminary audit, for which we collected and validated master data of spare parts and ships, stock levels, history of consumption, and other statistics relating to the consumption of and demand for parts.
Next, we developed an artificial intelligence algorithm to address a “what-if” maintenance need that went beyond traditional preventive maintenance—in other words, the AI we engaged served to enable predictions and scenario planning. In so doing, we effectively built the shipping company a new business model that enabled them to better manage the process of predicting what spare parts each ship would need, taking into account all the logistics constraints.
While this process began with analyzing the current performance of these FSPO vessels, we were able to propose an entirely new business analysis and optimization model that allowed a view into “what-if” scenarios and evaluated different options for resolving them.
Typically, traditional preventive maintenance is an evaluation of all factors related to cyclicality or past events. But by plugging in multiple eventualities, the system was able to predict the need for given replacements outside the normal range of maintenance and expected breakdowns or timed obsolescence. Using AI thus allowed us to forecast or predict which spare parts would be needed and which should be on hand preventively, optimizing inventory levels and the transport of spare parts. In this case, we developed a form of machine learning comprising a self-adapting and self-learning algorithm specific to maintenance, repair, and operations on these ships. The system is also capable of calculating advanced consumption forecasts of parts. Hence the optimization of stock levels of mechanical spare parts and consumables, with stock levels based precisely on forecast algorithms, answered to the need for safety as well as convenience on these vessels—along with not getting stranded at sea.
The supply chain planning software the shipping company adopted used a phased approach—that is, we introduced the implementation in a conscious sequence, replacing old systems, processes, and methodologies gradually. We used probability forecasting and machine learning technologies that were designed to work together seamlessly and automatically. Starting from a basis of data on historical demand, the ML engine went on to improve the baseline probability forecasts by applying machine learning technology to the existing historical data. This helped to produce a more robust, reliable baseline forecast that accurately models the phenomena shaping the demand. The tool then layers on more sophisticated machine learning by leveraging additional external data sources.
That said, our experience at ToolsGroup suggests that forecasting can’t be completely based on machine learning techniques. Instead, it requires a solid statistical backbone to deal with the changing and often random nature of demand. In this case, we recommended that the company use a hybrid approach that employs probability forecasting and machine learning technologies which work together seamlessly and automatically.
To do this, we introduced a self-adaptive model for probabilistic forecasting using granular historical demand. We’ve found that for this shipping company and others, this approach is critical to success when using advanced machine learning—and yields significant benefits on its own. Applying machine learning technology to the existing historical data further improves the probability forecast, resulting in a more robust, reliable baseline that accurately models the phenomena shaping the demand. From there, the system can engage in more sophisticated machine learning, using external data sources such as weather forecasts, nautical indicators, availability through distributors and stores, social media and online search, Internet of Things, and more.
Machine learning engines thus improve the calculation of factors that affect demand. For this shipping company, ML produced a more accurate future forecast—resulting in lower costs, optimized inventory of parts needed, and reduced risk of downtime.
The quantitative, qualitative, and green benefits
Beyond helping to resolve some common industry problems, optimizing shipping supply chains has wider implications, as well. In the project discussed here, the benefits were first and foremost quantitative, since stock optimization coincides with the reduction of waste. The approach also enabled the avoidance of two common risks in logistics—stock-outs or the presence of excess stock. There are also qualitative benefits. For example, as planning improves, downstream interventions (and consequently costs resulting from re-negotiation with suppliers) decrease. Finally, greater efficiency is a source of greater sustainability, which is determined both in the reduction of waste and in the containment of potential toxic events. Enhanced forecasting forestalls corrective actions that can correspond to additional and therefore more costly and polluting transportation.
In general, one of the strengths of AI-powered technologies is their ability to crunch multiple demand variables to automatically generate a reliable demand forecast. This “self-tuning” approach allows the system to predict demand behavior much more accurately than considering demand history alone. Supply chain professionals understand the importance of accurate demand forecasting, yet this is a difficult task due to the extreme complexity of modern demand planning. Increasing forecasting complexity and rapidly shifting consumer demand are often exacerbated by seasonality, new product introductions, promotions, and myriad causal factors such as weather and social media. A high level of automated machine learning is an ideal application to improve forecast accuracy in supply chain planning. ML also supports the development of more resilient supply chain planning practices because it enables the whole system to react to changes and disruptions in a timely manner. Businesses that use ML-augmented supply chain platforms can harness real-time data for immediate action and become more resilient and future proof.
Authors’ Note: This case study was presented at a recent conference held in Genoa, Italy, “Digital Infrastructure and Predictive Logistics: Strategies, Risks and Opportunities in Transportation Supply Chain Data Exchange." The event was sponsored by Logistic Digital Community, a virtual community created through the initiative of Confcommercio-Conftrasporto in collaboration with Federlogistica and Consorzio Global.
Just 29% of supply chain organizations have the competitive characteristics they’ll need for future readiness, according to a Gartner survey released Tuesday. The survey focused on how organizations are preparing for future challenges and to keep their supply chains competitive.
Gartner surveyed 579 supply chain practitioners to determine the capabilities needed to manage the “future drivers of influence” on supply chains, which include artificial intelligence (AI) achievement and the ability to navigate new trade policies. According to the survey, the five competitive characteristics are: agility, resilience, regionalization, integrated ecosystems, and integrated enterprise strategy.
The survey analysis identified “leaders” among the respondents as supply chain organizations that have already developed at least three of the five competitive characteristics necessary to address the top five drivers of supply chain’s future.
Less than a third have met that threshold.
“Leaders shared a commitment to preparation through long-term, deliberate strategies, while non-leaders were more often focused on short-term priorities,” Pierfrancesco Manenti, vice president analyst in Gartner’s Supply Chain practice, said in a statement announcing the survey results.
“Most leaders have yet to invest in the most advanced technologies (e.g. real-time visibility, digital supply chain twin), but plan to do so in the next three-to-five years,” Manenti also said in the statement. “Leaders see technology as an enabler to their overall business strategies, while non-leaders more often invest in technology first, without having fully established their foundational capabilities.”
As part of the survey, respondents were asked to identify the future drivers of influence on supply chain performance over the next three to five years. The top five drivers are: achievement capability of AI (74%); the amount of new ESG regulations and trade policies being released (67%); geopolitical fight/transition for power (65%); control over data (62%); and talent scarcity (59%).
The analysis also identified four unique profiles of supply chain organizations, based on what their leaders deem as the most crucial capabilities for empowering their organizations over the next three to five years.
First, 54% of retailers are looking for ways to increase their financial recovery from returns. That’s because the cost to return a purchase averages 27% of the purchase price, which erases as much as 50% of the sales margin. But consumers have their own interests in mind: 76% of shoppers admit they’ve embellished or exaggerated the return reason to avoid a fee, a 39% increase from 2023 to 204.
Second, return experiences matter to consumers. A whopping 80% of shoppers stopped shopping at a retailer because of changes to the return policy—a 34% increase YoY.
Third, returns fraud and abuse is top-of-mind-for retailers, with wardrobing rising 38% in 2024. In fact, over two thirds (69%) of shoppers admit to wardrobing, which is the practice of buying an item for a specific reason or event and returning it after use. Shoppers also practice bracketing, or purchasing an item in a variety of colors or sizes and then returning all the unwanted options.
Fourth, returns come with a steep cost in terms of sustainability, with returns amounting to 8.4 billion pounds of landfill waste in 2023 alone.
“As returns have become an integral part of the shopper experience, retailers must balance meeting sky-high expectations with rising costs, environmental impact, and fraudulent behaviors,” Amena Ali, CEO of Optoro, said in the firm’s “2024 Returns Unwrapped” report. “By understanding shoppers’ behaviors and preferences around returns, retailers can create returns experiences that embrace their needs while driving deeper loyalty and protecting their bottom line.”
Facing an evolving supply chain landscape in 2025, companies are being forced to rethink their distribution strategies to cope with challenges like rising cost pressures, persistent labor shortages, and the complexities of managing SKU proliferation.
1. Optimize labor productivity and costs. Forward-thinking businesses are leveraging technology to get more done with fewer resources through approaches like slotting optimization, automation and robotics, and inventory visibility.
2. Maximize capacity with smart solutions. With e-commerce volumes rising, facilities need to handle more SKUs and orders without expanding their physical footprint. That can be achieved through high-density storage and dynamic throughput.
3. Streamline returns management. Returns are a growing challenge, thanks to the continued growth of e-commerce and the consumer practice of bracketing. Businesses can handle that with smarter reverse logistics processes like automated returns processing and reverse logistics visibility.
4. Accelerate order fulfillment with robotics. Robotic solutions are transforming the way orders are fulfilled, helping businesses meet customer expectations faster and more accurately than ever before by using autonomous mobile robots (AMRs and robotic picking.
5. Enhance end-of-line packaging. The final step in the supply chain is often the most visible to customers. So optimizing packaging processes can reduce costs, improve efficiency, and support sustainability goals through automated packaging systems and sustainability initiatives.
That clash has come as retailers have been hustling to adjust to pandemic swings like a renewed focus on e-commerce, then swiftly reimagining store experiences as foot traffic returned. But even as the dust settles from those changes, retailers are now facing renewed questions about how best to define their omnichannel strategy in a world where customers have increasing power and information.
The answer may come from a five-part strategy using integrated components to fortify omnichannel retail, EY said. The approach can unlock value and customer trust through great experiences, but only when implemented cohesively, not individually, EY warns.
The steps include:
1. Functional integration: Is your operating model and data infrastructure siloed between e-commerce and physical stores, or have you developed a cohesive unit centered around delivering seamless customer experience?
2. Customer insights: With consumer centricity at the heart of operations, are you analyzing all touch points to build a holistic view of preferences, behaviors, and buying patterns?
3. Next-generation inventory: Given the right customer insights, how are you utilizing advanced analytics to ensure inventory is optimized to meet demand precisely where and when it’s needed?
4. Distribution partnerships: Having ensured your customers find what they want where they want it, how are your distribution strategies adapting to deliver these choices to them swiftly and efficiently?
5. Real estate strategy: How is your real estate strategy interconnected with insights, inventory and distribution to enhance experience and maximize your footprint?
When approached cohesively, these efforts all build toward one overarching differentiator for retailers: a better customer experience that reaches from brand engagement and order placement through delivery and return, the EY study said. Amid continued volatility and an economy driven by complex customer demands, the retailers best set up to win are those that are striving to gain real-time visibility into stock levels, offer flexible fulfillment options and modernize merchandising through personalized and dynamic customer experiences.
Geopolitical rivalries, alliances, and aspirations are rewiring the global economy—and the imposition of new tariffs on foreign imports by the U.S. will accelerate that process, according to an analysis by Boston Consulting Group (BCG).
Without a broad increase in tariffs, world trade in goods will keep growing at an average of 2.9% annually for the next eight years, the firm forecasts in its report, “Great Powers, Geopolitics, and the Future of Trade.” But the routes goods travel will change markedly as North America reduces its dependence on China and China builds up its links with the Global South, which is cementing its power in the global trade map.
“Global trade is set to top $29 trillion by 2033, but the routes these goods will travel is changing at a remarkable pace,” Aparna Bharadwaj, managing director and partner at BCG, said in a release. “Trade lanes were already shifting from historical patterns and looming US tariffs will accelerate this. Navigating these new dynamics will be critical for any global business.”
To understand those changes, BCG modeled the direct impact of the 60/25/20 scenario (60% tariff on Chinese goods, a 25% on goods from Canada and Mexico, and a 20% on imports from all other countries). The results show that the tariffs would add $640 billion to the cost of importing goods from the top ten U.S. import nations, based on 2023 levels, unless alternative sources or suppliers are found.
In terms of product categories imported by the U.S., the greatest impact would be on imported auto parts and automotive vehicles, which would primarily affect trade with Mexico, the EU, and Japan. Consumer electronics, electrical machinery, and fashion goods would be most affected by higher tariffs on Chinese goods. Specifically, the report forecasts that a 60% tariff rate would add $61 billion to cost of importing consumer electronics products from China into the U.S.