Machine learning: A new tool for better forecasting
Business volatility and the complexity of factors influencing demand are making it hard to reliably model the causes of demand variation. Machine learning can help companies overcome that challenge.
Demand forecasting is difficult, and most demand forecasting conducted today produces disappointing results and significant forecast errors. It cannot easily identify trends in the demand data, and its limited ability to understand the underlying causes of demand variability makes that variability seem worse than it would if demand drivers were clearly understood. And because it is manually intensive, it suffers from persistent bias and poor planner productivity.
"Supply Chain Shaman" Lora Cecere puts it bluntly. In her excellent book, Bricks Matter, she writes, "Within an organization, the words 'Demand Planning' stir emotions. Usually, it is not a mild reaction. Instead, it's a series of emotions defined by wild extremes including anger, despair, disillusionment, or hopelessness." She goes on to say that planning teams are dismayed by demand planning's challenges, and further claims that leaders are not optimistic about making improvements to planning processes and technologies.
What makes forecasting demand so challenging? Rather than appearing as a logical series of numbers, in today's business environment demand more often seems like a pattern of partially constrained chaos. Demand is increasingly influenced by multiple internal and external factors that drive it up and down in ways that can't be understood by simply looking at a historical time-series of aggregated demand buckets. Instead, demand should be viewed as being driven by a complex series of indicators that can be nearly impossible to manage with traditional forecasting algorithms.
However, a new technology called machine learning can help companies address demand-forecasting challenges by reliably modeling the numerous causes of demand variation. Machine learning is a computer-based discipline in which algorithms can actually "learn" from the data. Rather than following only explicitly programmed instructions, these algorithms use data to build and constantly refine a model to make predictions. I'll explain in more detail later, but first I'd like to describe several business scenarios where companies have employed machine learning in their demand forecasting. See if any of these scenarios suggest familiar attributes in your own business.
Lots of promotions. Every year, the Italian dairy producer Granarolo S.p.A. runs thousands of consumer promotions, creating forecasting scenarios for 34,000 unique stock-keeping unit (SKU) promotions. And it gets worse: Demand spikes can amount to an extraordinary 30 times baseline sales. (For more about these challenges, see the Granarolo sidebar.)
This is a common predicament. Expenses for advertising and promotions can add up to more than 20 percent of sales for many consumer products companies. Yet according to Michael Kantor, founder and chief executive officer of the Promotion Optimization Institute, only about 1 in 50 brands is able to forecast demand uplift reliably enough to guarantee consumer product availability and to evaluate the economic returns on those promotions. Without improved technology, few companies can forecast effectively in such a promotion-heavy environment. (For an example, see the sidebar about Groupe Danone.)
Lots of new products. The United Kingdom-based electronics distributor Electrocomponents plc is a top-ranked global distributor with 500,000-plus in-stock items. The company introduces 5,000 new products every month and fulfills more than 44,000 same-day orders every day from its operations in 32 countries. A few new products a month is one thing, but predicting demand for such a vast array of new products is more than a demand planner can reasonably be expected to handle. Plus, new products, by definition, are difficult to forecast. Nevertheless, planners can tap into external data to help them predict initial demand and thus decide how much marketing budget to invest in launching a new product.
Lots of "long-tail" demand. Companies whose e-commerce business is growing find themselves having to forecast demand for more slow-moving, "long-tail" items that customers order infrequently and in small quantities. Outliers are naturally hard to predict, making inventory planning notoriously difficult. Even if you can predict the average demand for certain products, you probably can't predict the demand spikes. This makes it nearly impossible to maintain a balance—having enough on hand to satisfy sudden spikes without adding unnecessary inventory and eventually holding "dead stock."
Growing complexity. Planning wasn't so complicated when Granarolo started out in the 1960s as a local collective of milk producers, but gradually complexity intensified as the company grew into a multinational concern comprising eight brands and hundreds of different dairy products, and utilizing various delivery modes. Its basic software was never designed to handle this kind of growth, and what resulted was progressively inaccurate forecasting that needed time-consuming manual activity to fine-tune. Granarolo's situation is typical of modern supply chains, which continue to increase in complexity.
Extreme seasonality. The United States-based heating, ventilation, and air conditioning (HVAC) manufacturer Lennox International Inc.'s forecasting was complicated because of its high number of SKUs (each of which had its own unique demand pattern) and a significant stock of slow-moving parts, and because it is an extremely seasonal business. Further complicating matters was the company's plans to greatly expand its distribution network, as detailed in the Lennox sidebar. There was no way the manufacturer could manage this level of complexity and variability without adopting a highly automated demand planning system.
Just too much data. In all of these companies we find a pattern that is common to most of today's businesses: a proliferation of new data. I'm referring here primarily to market and logistical data that can help companies better predict demand. Having to manage huge volumes of diverse and ever-growing data streams is more than most planners (and planning systems) can handle. Trying to incorporate them into a forecast using spreadsheets or traditional planning tools is frustrating, often futile, and can be extremely costly.
The companies in the scenarios above share an intrinsic level of complexity and scale that makes it almost impossible for planners to generate reliable forecasts. They are no longer simple and predictable businesses, able to forecast based on historic sales volumes—if they ever were! Their planners were overwhelmed.
In many cases we see, people don't start contributing to forecasts until the very end of the process. So, rather than providing input to help generate an accurate forecast in the first place, they're collaborating to adjust the forecast "output." This approach is inefficient. While some late-stage "crowd wisdom" can be useful, it can also introduce bias. A typical example is when a sales organization artificially adjusts a forecast to match revenue targets.
What else do these companies have in common? They all turned to machine learning in order to increase forecast reliability. This decision dramatically slashed inventory costs and at the same time provided better, more efficient service to customers. It also meant that planners no longer had to waste time manually overriding or adjusting forecasts.
Let's examine how machine learning enabled these improvements.
What machine learning is and does Machine learning systems were designed to handle forecasting models that can incorporate many kinds of data. Rather than following traditional programmed instructions, machine learning systems reduce demand variability by capturing and modeling all the relevant attributes that shape demand while filtering out the "noise," or random and unpredictable demand fluctuations.
As a result, they learn from the data that they process and modify their operations accordingly. For example, a machine learning system that uses Web data to quickly detect successful new products will find and learn which demand indicators—such as Web page hits, specification downloads, and time on site—are most reliable, and then will update its model over time as consumer behavior changes.
Machine learning can interpret the effect of stimuli (such as trade promotions and advertising) and demand indicators (such as social media activity) originating from each distribution channel. As information proliferates, the data concerning these causes and demand indicators become both more accessible and more manageable over time. Machine learning systems therefore can integrate and usefully model these important new data sources, including detailed market data, machine telemetry, and social media feeds, in ways that are simply not possible with legacy planning systems.
What does this mean in practical terms? For one thing, it means companies can take advantage of valuable data signals that are generated closer to the consumer, including data from points of sale and social media channels. This enables companies to understand the impact of demand drivers such as media, promotions, and new product introductions, and to then use that knowledge to significantly improve forecast quality and detail.
Could you benefit from machine learning? Would machine learning technology be beneficial for your supply chain? One way to know is by finding out whether your old planning system may be causing escalating costs. Here are three potential signs of this problem, and how machine learning can help to address them:
Inflated safety-stock levels. You can't trust your safety-stock levels to deliver the required service levels, so you keep them artificially high. By taking more demand variables into account, machine learning can help companies with a diverse range of SKU profiles, including long-tail items, to set optimal, lower levels they can trust.
Planning team "burnout." Your team is spending too much time manually adjusting and evaluating forecasts, and often is still not able to deliver them accurately enough or on time. This leads to poor productivity and morale. Machine learning takes more demand variables into account and weights each according to its significance, resulting in much more accurate forecasts. This helps planners succeed in their roles and frees up time for them to refine forecasts using their personal insights and business knowledge.
An inefficient sales and operations planning (S&OP) process. Your consensus forecast from the S&OP is unreliable, or the collaboration process behind it is too slow to adapt to the dynamic nature of the market and SKU behavior. Machine learning's high level of automation can improve the quality of the short- and mid-term forecast by picking up key trends from transactional and promotional data and providing actionable insights about those trends, thereby making the S&OP process more efficient and effective in achieving your business objectives.
If any of these situations resonate, it's likely time to take a closer look at machine learning technology. This doesn't have to mean "ripping and replacing" your existing software. Granarolo, for example, implemented machine learning technology alongside its existing systems to boost performance. Companies that implement machine learning often find that it is easy to use, and that its ability to learn from existing data means that it takes relatively less time to implement, deliver benefits, and pay for itself.
In the not-too-distant future, most supply chains will rely on software that uses machine learning technology to analyze much larger, more diverse data sets. For companies that are serious about tackling today's complex forecasting problems, this new technology will prove an invaluable tool.
GRANAROLO S.p.A.
Forecasting scenario: The Italian dairy producer Granarolo runs thousands of promotions annually, producing 34,000 item-promotion forecasting combinations and causing demand peaks of up to 30 times baseline sales.
Supply chain environment: Eight production plants, six logistics technology platforms, 35 transit depots holding inventory, a large fleet of refrigerated vehicles, and about 750 merchandisers servicing daily sales. A network of 100 wholesale distributors covers other local markets.
Benefits from machine learning: Granarolo's average forecast reliability has increased from 80 percent to 85 percent and is peaking at 95 percent for fresh milk and cream and 88 percent for yogurt and dessert products. Inventory levels and delivery times have been halved, resulting in fresher products and less waste. Overall, Granarolo has significantly raised customer service levels and sales while at the same time reducing transportation costs.
Â
LENNOX INTERNATIONAL INC.
Forecasting scenario: Lennox, a U.S.-based manufacturer of heating, ventilation, and cooling equipment, had to manage an ambitious expansion of its North American distribution network while transitioning to a three-tier design that included regional distribution centers. Lennox would have to implement this change while maintaining high service levels in both its finished-goods and aftermarket-parts businesses, and in an environment encompassing fast-moving to very slow-moving items, strong seasonality, and demand variability.
Supply chain environment: The company was shifting from a multiechelon distribution network with more than 80 locations to a network of more than 130 locations in the United States and Canada. This expansion involved:
Moving from 450,000 finished-goods and spare-parts stock-keeping unit (SKU) locations to more than 700,000
Tens of millions of dollars tied up in inventories, including a "long tail" (98 percent of SKUs responsible for 62 percent of revenues) and many slow movers with classic "lumpy" demand that is uneven in terms of timing and quantity
Many new-product introductions; in one recent year, nearly 50 percent of the finished-goods product line was replaced with new models
High product-availability targets, including 75 percent of orders for next-day delivery and 20 percent of sales to installers and contractors who need same-day pickup
Assured serviceability on finished goods for 15+ years
Highly variable independent demand, driven by external factors that are difficult to model (for example, weather and macroeconomic conditions)
Highly seasonal demand (air conditioning and heating), with little retail buffer
Benefits from machine learning: Lennox was able to automate its planning process and create an improved inventory mix over its widespread distribution network. Despite aggressively growing its distribution network by 30 percent in two years, Lennox has already cut stockouts by more than half, from 9 percent down to 4 percent, and trending toward further improvement.
ReposiTrak, a global food traceability network operator, will partner with Upshop, a provider of store operations technology for food retailers, to create an end-to-end grocery traceability solution that reaches from the supply chain to the retail store, the firms said today.
The partnership creates a data connection between suppliers and the retail store. It works by integrating Salt Lake City-based ReposiTrak’s network of thousands of suppliers and their traceability shipment data with Austin, Texas-based Upshop’s network of more than 450 retailers and their retail stores.
That accomplishment is important because it will allow food sector trading partners to meet the U.S. FDA’s Food Safety Modernization Act Section 204d (FSMA 204) requirements that they must create and store complete traceability records for certain foods.
And according to ReposiTrak and Upshop, the traceability solution may also unlock potential business benefits. It could do that by creating margin and growth opportunities in stores by connecting supply chain data with store data, thus allowing users to optimize inventory, labor, and customer experience management automation.
"Traceability requires data from the supply chain and – importantly – confirmation at the retail store that the proper and accurate lot code data from each shipment has been captured when the product is received. The missing piece for us has been the supply chain data. ReposiTrak is the leader in capturing and managing supply chain data, starting at the suppliers. Together, we can deliver a single, comprehensive traceability solution," Mark Hawthorne, chief innovation and strategy officer at Upshop, said in a release.
"Once the data is flowing the benefits are compounding. Traceability data can be used to improve food safety, reduce invoice discrepancies, and identify ways to reduce waste and improve efficiencies throughout the store,” Hawthorne said.
Under FSMA 204, retailers are required by law to track Key Data Elements (KDEs) to the store-level for every shipment containing high-risk food items from the Food Traceability List (FTL). ReposiTrak and Upshop say that major industry retailers have made public commitments to traceability, announcing programs that require more traceability data for all food product on a faster timeline. The efforts of those retailers have activated the industry, motivating others to institute traceability programs now, ahead of the FDA’s enforcement deadline of January 20, 2026.
Inclusive procurement practices can fuel economic growth and create jobs worldwide through increased partnerships with small and diverse suppliers, according to a study from the Illinois firm Supplier.io.
The firm’s “2024 Supplier Diversity Economic Impact Report” found that $168 billion spent directly with those suppliers generated a total economic impact of $303 billion. That analysis can help supplier diversity managers and chief procurement officers implement programs that grow diversity spend, improve supply chain competitiveness, and increase brand value, the firm said.
The companies featured in Supplier.io’s report collectively supported more than 710,000 direct jobs and contributed $60 billion in direct wages through their investments in small and diverse suppliers. According to the analysis, those purchases created a ripple effect, supporting over 1.4 million jobs and driving $105 billion in total income when factoring in direct, indirect, and induced economic impacts.
“At Supplier.io, we believe that empowering businesses with advanced supplier intelligence not only enhances their operational resilience but also significantly mitigates risks,” Aylin Basom, CEO of Supplier.io, said in a release. “Our platform provides critical insights that drive efficiency and innovation, enabling companies to find and invest in small and diverse suppliers. This approach helps build stronger, more reliable supply chains.”
Logistics industry growth slowed in December due to a seasonal wind-down of inventory and following one of the busiest holiday shopping seasons on record, according to the latest Logistics Managers’ Index (LMI) report, released this week.
The monthly LMI was 57.3 in December, down more than a percentage point from November’s reading of 58.4. Despite the slowdown, economic activity across the industry continued to expand, as an LMI reading above 50 indicates growth and a reading below 50 indicates contraction.
The LMI researchers said the monthly conditions were largely due to seasonal drawdowns in inventory levels—and the associated costs of holding them—at the retail level. The LMI’s Inventory Levels index registered 50, falling from 56.1 in November. That reduction also affected warehousing capacity, which slowed but remained in expansion mode: The LMI’s warehousing capacity index fell 7 points to a reading of 61.6.
December’s results reflect a continued trend toward more typical industry growth patterns following recent years of volatility—and they point to a successful peak holiday season as well.
“Retailers were clearly correct in their bet to stock [up] on goods ahead of the holiday season,” the LMI researchers wrote in their monthly report. “Holiday sales from November until Christmas Eve were up 3.8% year-over-year according to Mastercard. This was largely driven by a 6.7% increase in e-commerce sales, although in-person spending was up 2.9% as well.”
And those results came during a compressed peak shopping cycle.
“The increase in spending came despite the shorter holiday season due to the late Thanksgiving,” the researchers also wrote, citing National Retail Federation (NRF) estimates that U.S. shoppers spent just short of a trillion dollars in November and December, making it the busiest holiday season of all time.
The LMI is a monthly survey of logistics managers from across the country. It tracks industry growth overall and across eight areas: inventory levels and costs; warehousing capacity, utilization, and prices; and transportation capacity, utilization, and prices. The report is released monthly by researchers from Arizona State University, Colorado State University, Rochester Institute of Technology, Rutgers University, and the University of Nevada, Reno, in conjunction with the Council of Supply Chain Management Professionals (CSCMP).
As U.S. small and medium-sized enterprises (SMEs) face an uncertain business landscape in 2025, a substantial majority (67%) expect positive growth in the new year compared to 2024, according to a survey from DHL.
However, the survey also showed that businesses could face a rocky road to reach that goal, as they navigate a complex environment of regulatory/policy shifts and global market volatility. Both those issues were cited as top challenges by 36% of respondents, followed by staffing/talent retention (11%) and digital threats and cyber attacks (2%).
Against that backdrop, SMEs said that the biggest opportunity for growth in 2025 lies in expanding into new markets (40%), followed by economic improvements (31%) and implementing new technologies (14%).
As the U.S. prepares for a broad shift in political leadership in Washington after a contentious election, the SMEs in DHL’s survey were likely split evenly on their opinion about the impact of regulatory and policy changes. A plurality of 40% were on the fence (uncertain, still evaluating), followed by 24% who believe regulatory changes could negatively impact growth, 20% who see these changes as having a positive impact, and 16% predicting no impact on growth at all.
That uncertainty also triggered a split when respondents were asked how they planned to adjust their strategy in 2025 in response to changes in the policy or regulatory landscape. The largest portion (38%) of SMEs said they remained uncertain or still evaluating, followed by 30% who will make minor adjustments, 19% will maintain their current approach, and 13% who were willing to significantly adjust their approach.
Specifically, the two sides remain at odds over provisions related to the deployment of semi-automated technologies like rail-mounted gantry cranes, according to an analysis by the Kansas-based 3PL Noatum Logistics. The ILA has strongly opposed further automation, arguing it threatens dockworker protections, while the USMX contends that automation enhances productivity and can create long-term opportunities for labor.
In fact, U.S. importers are already taking action to prevent the impact of such a strike, “pulling forward” their container shipments by rushing imports to earlier dates on the calendar, according to analysis by supply chain visibility provider Project44. That strategy can help companies to build enough safety stock to dampen the damage of events like the strike and like the steep tariffs being threatened by the incoming Trump administration.
Likewise, some ocean carriers have already instituted January surcharges in pre-emption of possible labor action, which could support inbound ocean rates if a strike occurs, according to freight market analysts with TD Cowen. In the meantime, the outcome of the new negotiations are seen with “significant uncertainty,” due to the contentious history of the discussion and to the timing of the talks that overlap with a transition between two White House regimes, analysts said.