Skip to content
Search AI Powered

Latest Stories

Trend watch: Low-code application platforms can transform WMS

Low-code application platforms (LCAPs) simplify the software development process by allowing users to drag and drop prebuilt components to create applications. The benefits for warehouse management systems are many.

SCX24_08_low code_1200x800.jpg

More than ever before, supply chain businesses are faced with dynamic conditions due to consumer buying trends, supply chain disruptions, and upheaval caused by other outside forces including war, political instability, and weather conditions. Supply chain companies, including warehouses, must be able to pivot quickly and make changes to operational processes without waiting for weeks or months.

As a result, warehouse management systems (WMS) need to be agile enough to make changes to operational processes and turn on a dime in today’s fast-paced world. Traditional warehouse management systems, however, are rigid and complex, not easy to customize or change. In addition, integrations—especially to modern technologies such as the internet of things (IoT), artificial intelligence (AI), and machine learning—can be problematic.


Furthermore, traditional warehouse management systems depend on the expertise, experience, and knowledge of software developers to hand code applications. This type of technical labor is costly and can be hard to find, leading to dependence on the WMS software developer. Whenever changes or customizations to traditional WMS are needed, experienced software developers are needed, and this effort is usually time-consuming and expensive.

One solution is to consider a warehouse management system built on a low-code application platform (LCAP).  Unlike traditional warehouse management systems, software applications built on LCAPs are more flexible, adaptable to meet changing business requirements, easier to integrate, and scalable.

[subhead] What are low-code application platforms?

LCAPs give users a visual, drag-and-drop interface that allows them to create applications by assembling prebuilt components, integrations, and templates. This simplification of the software development process facilitates faster prototyping, iteration, and deployment.

It also enables application development to be open to nontechnical users who may have significant experience, knowledge, and expertise in warehouse operations. Nontechnical users can work alongside IT resources to automate workflows, create business rules, process flows, and data models. To do this, visual tools are used to replace the need for writing complex code. Event-driven triggers and actions are leveraged to automate repetitive tasks and integrate with other systems. This can lead to better alignment of operational processes within the warehouse.

Low-code application platforms may also include features to promote team collaboration. Multiple users can work on the same project simultaneously, and version control mechanisms help to ensure that changes can be tracked and managed efficiently. In case it becomes necessary, rollback can be used to return to previous versions.

Low-code application platforms include tools for deployment, hosting, and maintenance. Applications can be deployed by users to a variety of environments with only minimal configuration. Maintenance and updates can be handled within the platform, and automated testing and deployment pipelines are frequently used.

Seven benefits of LCAPs

There are many benefits to using an LCAP as opposed to a traditionally coded warehouse management system, including:

1. Adaptability and ability to customize. LCAPs provide significant value for a WMS due to the speed at which applications, features, and customizations can be developed and deployed. This can help to ensure higher customer satisfaction and the ability to adapt more rapidly to supply chain disruptions, changes in demand, and advances in technology.

LCAPs help solve the challenges faced by a rigid traditional WMS by making the WMS faster and easier to tailor to meet customer or business requirements without high-priced IT resources. This can translate into time and labor savings for the warehouse operator.

2. Integration. A traditional WMS often does not have the capability of integrating with cloud-based services, limiting the ability for it to take advantage of the cost benefits, flexibility, and scalability of cloud computing. In addition, it is often challenging for traditional warehouse management systems to integrate with automation technologies including robotics, autonomous guided vehicles (AGVs), conveyor systems, and other technologies.

Because LCAPs leverage built-in connectors as well as application programming interfaces (APIs) that facilitate integration with other systems, integration is seamless, ensuring a more efficient, cohesive ecosystem. This ease of integration can aid in unifying data across different systems to improve decision-making and information visibility. 

3. Scalability. As a business grows, warehouse operations typically become more complex. This complexity typically leads to the need to handle increased volumes of data and more complicated workflows as well as expanded warehouse operations. This can present challenges for traditional warehouse management systems.

Low-code application platforms are able to scale more easily to handle increased volumes of data, more operational complexity, and additional functionality without a complete overhaul of the WMS. It is faster and easier to make quick adjustments on a WMS built on an LCAP.  The system can easily scale up or down to handle new business requirements, changes in demand, and much more.

4. Security. Older warehouse management systems may lack the advanced security features required to protect sensitive data from cyber-attacks. Modern low-code application platforms typically include robust security measures to ensure that data is protected.

5. Up-to-date user interface and user experience.  The outdated user interfaces commonly found with many older warehouse management systems can hamper productivity and lead to errors. WMS users need to have a streamlined user interface, designed to focus their attention on operations, without distractions.

Using a WMS built on an LCAP can improve the user experience and boost productivity. This is because LCAPs often feature intuitive, user-friendly interfaces that enhance the overall user experience. This makes it easier for warehouse workers to navigate the software, reducing errors and frustration.

6. Real time visibility. Older warehouse management systems may not be able to provide visibility into warehouse operations, inventory levels, and order status in real time. This can reduce the responsiveness to customer and market demands and delay decision-making.

One advantage of using a WMS built on an LCAP is that it can be integrated to IoT devices and sensors. This will enable the capture of real-time data on inventory levels, environmental conditions within the warehouse, equipment status, and more. 

7. Data management. Today, with the popularity of online shopping, a WMS needs to be able to handle a high volume of orders with many individual items per order. A traditional WMS, which is designed to handle goods by the case or pallet, rather than by the individual saleable unit, may have performance issues, such as with data lock up or data retrieval, when handling large volumes of data.

Using a WMS built on an LCAP can facilitate the integration of multiple data sources into one unified platform, improving data accuracy and consistency. All data is available in one place. In addition, there are built-in tools for data validation, cleansing, and governance. This helps to ensure high data quality, essential for reliable real-time data visibility.

Transformative potential

Technology continues to advance. Software development continues to evolve. By taking advantage of low-code application platforms to simplify the software development process, supply chain professionals can ensure that they are able to keep up with these changes. 

LCAPs enable rapid development, customization, and deployment of software applications, enabling businesses to respond to changing market conditions and technological advances. The result is notable cost and time savings, increased efficiency, and more effective operations. Using LCAPs, companies can take advantage of increased flexibility, scalability, and adaptability to be more competitive, drive operational excellence, and support growth.

Recent

More Stories

digital chain links

How to evaluate blockchain for your supply chain

In 2015, blockchain (the technology that makes digital currencies such as bitcoin work) was starting to be explored as a solution for supply chains. It promised cost savings, increased efficiency, and heightened transparency, among other benefits. For that reason, many companies were happy to run pilots testing blockchain for themselves. Today, these small-scale projects have been replaced by large-scale enterprise adoption of blockchain-based supply chain solutions. There are plenty of choices now for blockchain supply chain products, platforms, and providers. This makes the option to use blockchain available now to nearly everyone in the sector. This wealth of choice does, however, make it more difficult to decide which blockchain integration is best (or, indeed, if your organization needs to use it at all). To find the right blockchain, companies need to consider three factors: cost, sustainability, and the ultimate goal of trying new technology.

Choosing the right blockchain for an enterprise supply chain begins with the most basic consideration: cost. Blockchains work by securely recording “transactions,” and in a supply chain, those transactions are essentially database updates. However, making such updates has varying costs on different chains. If a container moves locations, that entry is updated, and a transaction is recorded. Enterprises need to figure out how many products, containers, or pieces of information they will process daily. Each of these can be considered a transaction. Now, some blockchains cost not even $1 to record a million movements. Other chains can cost thousands of dollars for the same amount of recording. Understanding the amount of activity you will need to record against the cost of transactions is the first place for an enterprise to start when considering blockchain. Ask the provider which blockchain their product is built on, and its average transaction cost. This will help you find the most cost-effective product or integration.

Keep ReadingShow less

Featured

A series of blocks. The first block is balanced on the edge so that it shows both "glob" and "loc" the rest of the blocks read "alization" to create the sense of both "globalizaiton" and "localization."

Balancing global sourcing and local availability can improve supply chain resiliency and sustainability.

Prazis Images via Adobe Stock

“Glocalization”: The path for navigating a volatile global supply chain

Over the last two decades, globalization became more intense, and with it, competition among companies and their supply networks. The constant fight for new sources of raw materials at a more competitive cost, the development of suppliers in low-cost countries, and the ability to manage logistic chains have become part of the routine of strategic sourcing.

In today's economic environment, companies are continuously pressured to reduce costs to combat slower growth; to offset increases in material prices, energy, and transportation; and to counterbalance various other pressures, such as inflation. Despite these issues and the economic instability worldwide, companies must continue to differentiate themselves and find growth opportunities to compete in the global marketplace. For example, in order to boost revenues and fuel growth, many companies are now under as much pressure to reduce product life cycles and speed-to-market as they are to find savings and reduce operational costs.

Keep ReadingShow less
A rusty blue chain crosses in front of blue, red, and yellow containers.

Labor strikes can stop supply chains in their tracks unless companies take steps to build up resiliency.

huntspy via Adobe Stock

Strikes and labor negotiations highlight need for resilient supply chains

Strikes and potential strikes have plagued the supply chain over the last few years. An analysis of data from the Bureau of Labor Statistics by the Economics Policy Institute concluded that the number of workers involved in major strike activity increased by 280% in 2023 from 2022. Currently, the U.S. East Coast and Gulf Coast ports are facing the threat of another dockworker strike after they return to the negotiating table in January to attempt to resolve the remaining wage and automation issues. Similarly, Boeing is continuing to contend with a machinists strike.

Strikes, or even the threat of a strike, can cause significant disruptions across the global supply chain and have a massive economic impact. For example, when U.S. railroads were facing the threat of a strike in 2022, many companies redirected their cargo to avoid work stoppages and unhappy customers. If the strike had occurred, the Association of American Railroads (AAR) estimated that the economic impact of a railroad strike could have been $2 billion per day.

Keep ReadingShow less
An illustration of a campaign button that says, "Supply Chain Issues" lays on top of a U.S. flag.

Supply chain professionals should be aware of how the different policies proposed by the U.S. presidential candidates would affect supply chain operations.

Jon Anders Wiken via Adobe Stock

Assessing the U.S. election impact on supply chain policy

For both Donald Trump and Kamala Harris, the revival of domestic manufacturing is a key campaign theme and centerpiece in their respective proposals for economic growth and national security. Amid the electioneering and campaign pledges, however, the centrality of supply chain policy is being lost in the shuffle. While both candidates want to make the supply chain less dependent on China and to rebuild the American industrial base, their approaches will impact manufacturing, allied sectors, and global supply chains much differently despite the common overlay of protectionist industrial policy.

Both Trump’s “America First” and Harris’ “Opportunity Economy” policies call for moving home parts of supply chains, like those that bring to market critical products like semiconductors, pharmaceutical products, and medical supplies, and strengthening long-term supply chain resilience by discouraging offshoring. Harris’ economic plan, dubbed the “New Way Forward,” aims to close tax loopholes, strengthen labor rights, and provide government support to high-priority sectors, such as semiconductors and green energy technologies. Trump’s economic plan, dubbed “New American Industrialism,” emphasizes tariffs, corporate tax cuts, and easing of regulations.

Keep ReadingShow less
AMRs and a drone operate in a warehouse environment. Overlaid are blue lines and data indicating that they are all connected digitally.

Future warehouse success depends on robot interoperability.

Image created by Yingyaipumi via Adobe Stock.

The Urgent Call for Warehouse Robotics Interoperability

Interest in warehouse robotics remains high, driven by labor pressures and a general desire to further automate distribution processes. Likewise, the number of robot makers also continues to grow. By one count, more than 50 providers exhibited at the big MODEX show in Atlanta in March 2024.

In distribution environments, there is especially strong interest in autonomous mobile robots (AMRs) for collaborative order picking. In this application, the AMR meets pickers at the right inventory location, and the workers then place picks in totes on the robot, which then moves on to another location/picker or off to packing, greatly reducing human travel time.

Keep ReadingShow less